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A B S T R A C T

In this paper, we focus on splitting a task into multiple sub-tasks to improve schedulability performance for a
set of tasks subject to timing constraints. Targeting FPS (Fixed Priority Scheduling) as a scheduling algorithm
and RTA (Response Time Analysis) as a schedulability analysis on a multiprocessor platform, we develop a
systematic method to utilize the task split, which addresses (i) how to apply the task split without violating
the timing requirement of the original tasks and (ii) how to apply each task so as to make an unschedulable
task set to be schedulable. Our simulation results demonstrate that RTA with the method finds 16.1%–19.4%
(on average) additional task sets that were not proven schedulable by the vanilla RTA.
1. Introduction

Timely execution of a set of tasks is the main focus of real-time
systems. To achieve this, numerous studies have paid attention to how
to determine the execution order of tasks (called scheduling algorithm)
and how to guarantee no deadline miss of tasks before run-time (called
schedulability analysis), e.g., [1–5]. However, there is still a room
for further schedulability performance improvement (i.e., providing
timing guarantees for more task sets), as most schedulability analyses
are only sufficient (not necessary). For example, there has been no
closed-form exact (i.e., sufficient and necessary) schedulability analysis
even for the most fundamental scheduling algorithms such as global1
FPS (Fixed-Priority Scheduling) and EDF (Earliest Deadline First) on a
multiprocessor platform.

In this paper, we develop a simple yet effective way to improve
schedulability performance, which splits a task into multiple sub-tasks.
While the task split can be generally applicable to most (if not all)
existing scheduling algorithms and their schedulability analyses, the
main challenges are (CH1) how to apply the task split without violating
the timing requirement of the original tasks, and (CH2) how to split
each task so as to make an unschedulable task set to be schedulable.
Targeting FPS as a scheduling algorithm and RTA (Response Time
Analysis) as a schedulability analysis on a multiprocessor platform, we
develop a systematic method that addresses CH1 and CH2. Note that
there have been some studies that utilize the task split [6–8], which
focus on how to efficiently split a task (to be executed in multiple
processors while each of other tasks is executed in a designated proces-
sor) in order to efficiently occupy each processor in semi-partitioned

E-mail address: jinkyu.lee@skku.edu.
1 By global scheduling, we mean that a task can be executed in any processor as opposed to partitioned scheduling. From now on, we will omit the term

‘‘global’’ when it is not necessary to refer.

scheduling. Therefore, they are totally different from the proposed
method, which splits multiple tasks in global scheduling.

To verify the effectiveness of the proposed method, we generate a
number of task sets for varying number of processors, and compare the
number of task sets proven schedulable by the vanilla RTA [3] and that
by RTA with the method. Our simulation results show that RTA with
the method significantly improves the schedulability performance in all
settings; it covers 16.1%–19.4% (on average) additional task sets that
were not proven schedulable by the vanilla RTA.

This paper makes the following contributions:

• Developing a systematic method to utilize the task split for
schedulability improvement of global multiprocessor scheduling,
and

• Applying the method to RTA for FPS, and demonstrating its
effectiveness through simulation results.

System model. In this paper, we consider a set of sporadic real-
time tasks (denoted by 𝜏), in which each task 𝜏𝑖 ∈ 𝜏 is represented
by 𝑇𝑖 (the period) and 𝐶𝑖 (the worst-case execution time). A job of
𝜏𝑖, once released at 𝑡, should finish its execution (that amounts to at
most 𝐶𝑖) until its absolute deadline 𝑡 + 𝑇𝑖, and the release times of
two consecutive jobs of 𝜏𝑖 are separated by at least 𝑇𝑖. Let the length
of the quantum be one time unit; all task parameters {𝑇𝑖} and {𝐶𝑖}
are natural numbers. We consider a multiprocessor platform consisting
of 𝑚 identical processors. We target FPS (Fixed-Priority Scheduling) in
which each task has its own pre-defined task-level priority; at any time,
vailable online 15 June 2022
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FPS chooses to execute (up to) 𝑚 jobs whose invoking tasks’ priorities
are the highest. Let 𝙷𝙿(𝜏𝑘) denote a set of tasks in 𝜏, whose priority is
higher than 𝜏𝑘.

2. Schedulability improvement via task split

In this section, we target RTA (Response Time Analysis) for FPS on
a multiprocessor platform [3], and develop a task split method that
improves the schedulability performance of FPS associated with RTA.

The basic structure of RTA for FPS on a multiprocessor platform [1,
2] is as follows. We target an interval of length 𝓁, which starts from
the release time of the job of 𝜏𝑘 of interest. We define 𝐼𝑘←𝑖(𝓁) as

cumulative length of intervals in which jobs of 𝜏𝑖 execute while
he job of 𝜏𝑘 of interest cannot in the target interval of length 𝓁.
onsidering the job of 𝜏𝑘 of interest cannot execute only when 𝑚 other

higher-priority jobs are executed, the following inequality is a sufficient
condition for the job of 𝜏𝑘 of interest to be schedulable [1,2]:

∑

𝜏𝑖∈𝙷𝙿(𝜏𝑘)
min

(

𝐼𝑘←𝑖(𝓁),𝓁 − 𝐶𝑘 + 1
)

< 𝑚 ⋅ (𝓁 − 𝐶𝑘 + 1). (1)

Then, the remaining step is to upper-bound 𝐼𝑘←𝑖(𝓁) for all jobs
of 𝜏𝑘. By definition, 𝐼𝑘←𝑖(𝓁) can be upper-bounded by the maximum
execution of jobs of 𝜏𝑖 in an interval of length 𝓁, which is calculated by
𝑊𝑖(𝓁) [1,2] as follows.

𝑊𝑖(𝓁) = 𝑁𝑖(𝓁) ⋅ 𝐶𝑖 + min
(

𝐶𝑖,𝓁 + 𝑇𝑖 − 𝐶𝑖 − 𝑆𝑖 −𝑁𝑖(𝓁) ⋅ 𝑇𝑖
)

, (2)

where 𝑁𝑖(𝓁) =
⌊ 𝓁+𝑇𝑖−𝐶𝑖−𝑆𝑖

𝑇𝑖

⌋

. Note that 𝑆𝑖 denotes a slack value of 𝜏𝑖,
meaning that every job of 𝜏𝑖 finishes its execution within (𝐷𝑖−𝑆𝑖) from
its release; we will explain how to calculate 𝑆𝑖 later.

The calculation of 𝑊𝑖(𝓁) considers the case where the amount of
execution of jobs of 𝜏𝑖 in an interval of length 𝓁 is maximized as
follows. The first job of 𝜏𝑖 starts its execution as late as possible, and
the following jobs of 𝜏𝑖 executes as early as possible; in addition,
the interval of interest of length 𝓁 starts when the first job starts
its execution. Then, 𝑁𝑖(𝓁) calculates the number of jobs of 𝜏𝑖 whose
deadline is within the interval, each contributing the full execution 𝐶𝑖.
On the other hand, the second term of Eq. (2) calculates the amount of
execution of the carry-out2 job of 𝜏𝑖 in the interval of length 𝓁. Then, if

e replace 𝐼𝑘←𝑖(𝓁) with 𝑊𝑖(𝓁), Eq. (1) becomes a schedulability analysis
for FPS [1,2].

In [9], it has been revealed that a critical instant of a job of 𝜏𝑘 under
FPS on a multiprocessor platform occurs only when there are at most
(𝑚 − 1) higher-priority carry-in3 jobs in the interval that starts at the
elease time of the job of 𝜏𝑘. In the case for a task 𝜏𝑖 not to have any
arry-in job in an interval of length 𝓁, the maximum execution of jobs
f 𝜏𝑖 in the interval is calculated by 𝐸𝑖(𝓁) [3] as follows.

𝐸𝑖(𝓁) =
⌊

𝓁
𝑇𝑖

⌋

⋅ 𝐶𝑖 + min
(

𝐶𝑖,max
(

0,𝓁 −
⌊

𝓁
𝑇𝑖

⌋

⋅ 𝑇𝑖
)

)

, (3)

hich is no larger than 𝑊𝑖(𝓁). The calculation of 𝐸𝑖(𝓁) considers the
ase where every job starts its execution as early as possible, and the
nterval of interest of length 𝓁 starts when the first job’s execution
tarts.

Instead of applying 𝑊𝑖(𝓁) as an upper bound of 𝐼𝑘←𝑖(𝓁) in Eq. (1), we
can apply 𝐸𝑖(𝓁) for non-carry-in jobs, yielding a tighter schedulability
analysis for FPS as follows.

2 A job is said to be carry-out in an interval, if the job is released before
he end of the interval and has remaining execution at the end of the interval.

3 A job is said to be carry-in in an interval, if the job is released before the
eginning of the interval and has remaining execution at the beginning of the
nterval.
2

p

emma 1 (In [3]). A task set 𝜏 is schedulable by FPS on an 𝑚-processor
platform, if every 𝜏𝑘 ∈ 𝜏 has 𝐶𝑘 ≤ 𝓁 ≤ 𝑇𝑘 that satisfies Eq. (4).

𝛥𝑘(𝓁) +
∑

𝜏𝑖∈𝙷𝙿(𝜏𝑘)
min

(

𝐸𝑖(𝓁),𝓁 − 𝐶𝑘 + 1
)

< 𝑚 ⋅ (𝓁 − 𝐶𝑘 + 1), (4)

here 𝛥𝑘(𝓁) is the sum of (𝑚− 1) largest
(

𝑊𝑖(𝓁),𝓁 −𝐶𝑘 + 1
)

−
(

𝐸𝑖(𝓁),𝓁 −
𝑘 + 1

)

among 𝜏𝑖 ∈ 𝙷𝙿(𝜏𝑘).

roof. In order to apply at most (𝑚 − 1) higher-priority carry-in jobs
or the critical instant of FPS on a multiprocessor platform, we add the
nterference as min(𝐸𝑖(𝓁),𝓁−𝐶𝑘 +1) for each higher-priority tasks, and
hen add the difference between min(𝑊𝑖(𝓁),𝓁−𝐶𝑘+1) and min(𝐸𝑖(𝓁),𝓁−
𝑘 + 1) for (𝑚 − 1) higher-priority tasks whose difference is the largest.
hen, for any combination of at most (𝑚 − 1) higher-priority carry-

n tasks, the amount of interference is upper-bounded by the LHS of
q. (4), which is derived by the condition of the critical instant of FPS
n a multiprocessor platform and the meaning of 𝑊𝑖(𝓁) and 𝐸𝑖(𝓁). The
etailed proof is given in [3]. □

Then, RTA for FPS operates as follows [1]. Initially, 𝑆𝑖 for every
ask is set to zero. Then, Eq. (4) is checked from the highest-priority
ask to the lowest-priority task.4 If a task 𝜏𝑘 is schedulable (i.e., Eq. (4)
olds), we calculate an upper bound of the response time of 𝜏𝑘 (denoted
y 𝑅𝑘), which is the sum of 𝐶𝑘 and the LHS (left-hand-side) of Eq. (4)
ivided by 𝑚; also, if 𝑅𝑘 < 𝑇𝑘 holds, we set 𝑆𝑘 to (𝑇𝑘 − 𝑅𝑘). Finally,
he task set 𝜏 is deemed schedulable, if Eq. (4) holds for every task.
therwise, we repeat the whole process with update slack values {𝑆𝑘};

he repetition ends with the task set deemed schedulable, or with no
ore slack update (yielding the task set deemed unschedulable).

Then, the problem to be solved in this paper is as follows. For given
𝜏𝑖 ∈ 𝜏} and their priorities for FPS, we find how to split each task
𝑖 ∈ 𝜏 into 𝜏′𝑖 ∈ 𝜏′, which satisfies the following statement: if we
chedule {𝜏′𝑖 ∈ 𝜏′} according to FPS with their original task priorities,
TA for FPS guarantees that there is no job deadline miss of {𝜏′𝑖 ∈ 𝜏′},
eaning that no job deadline miss of {𝜏𝑖 ∈ 𝜏} if we apply the schedule

or {𝜏′𝑖 ∈ 𝜏′}.
We outline the proposed method for the problem as follows. First,

e exemplify how Eq. (4) in RTA for FPS is changed if we split
asks, giving an intuition for the task split (in Example 1). Second,
e develop how to split each task even when its parameters are not
multiple of the quantum. Third, we derive a relationship between the

chedulability of the original task set and that of the split task set (in
heorem 1). Finally, we develop a systematic way to split all tasks in
he target task set in order to make the set schedulable (in Algorithm 1).

Now, we investigate how the task split (also known as the period
ransformation [10]) impacts on the schedulability of each task set.
s a first step, we define a split factor of 𝜏𝑖 as a natural number 𝛼𝑖.
hat is, 𝛼𝑖 transforms 𝜏𝑖 into 𝜏′𝑖 in which the period and the worst-case
xecution time of 𝜏𝑖 will be divided by 𝛼𝑖; therefore, 𝛼𝑖 = 1 means no
ask split. For example, 𝜏1(𝑇1 = 8, 𝐶1 = 4) will be transformed into
′
1(𝑇

′
1 = 4, 𝐶 ′

1 = 2) by 𝛼1 = 2; it is easily checked that the timing
uarantee of 𝜏′1 implies that of the original task 𝜏1. We will explain
ow to divide the parameters by 𝛼𝑖, if they are not a multiple of 𝛼𝑖.
he following example explains how Eq. (4) changes if we split tasks.

xample 1. Consider a set of three tasks 𝜏1(𝑇1 = 8, 𝐶1 = 4), 𝜏2(8, 4) and
3(12, 6) on a two-processor platform. 𝜏1 and 𝜏3 have the highest and
he lowest priority, respectively.

Since 𝐸1(12) = 𝐸2(12) = 8 and min(𝐸1(12), 12 − 6 + 1)
min(𝐸2(12), 12 − 6 + 1) = 7 hold, the LHS of Eq. (4) is the same as

he RHS (right-hand-side); therefore, 𝜏3 cannot satisfy Eq. (4).

4 How to efficiently find 𝓁 that satisfies the inequality is explained in [1],
hich is the same as that for the response time calculation on a uniprocessor
latform.
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On the other hand, suppose that we split 𝜏1 and 𝜏2 by two (i.e., 𝛼1 =
2 and 𝛼2 = 2), yielding 𝜏′1(𝑇

′
1 = 4, 𝐶 ′

1 = 2) and 𝜏′2(4, 2). Since 𝐸′
1(12) =

𝐸′
2(12) = 6 and min(𝐸1(12), 12 − 6+ 1) = min(𝐸2(12), 12 − 6+ 1) = 6 hold,

the LHS of Eq. (4) is strictly smaller than the RHS; therefore, 𝜏3 satisfies
Eq. (4).

As shown in the example, a task split of 𝜏𝑖 can reduce interference
f 𝜏𝑖 to other tasks; this is because, 𝐸𝑖(𝓁) and 𝑊𝑖(𝓁) decrease or remain

the same, if we divide 𝑇𝑖 and 𝐶𝑖 by the same natural number larger than
1. On the other hand, a task split of 𝜏𝑖 is not favourable to the schedula-
bility of 𝜏𝑖 itself; this is because, the ratio between 𝐸𝑘(𝓁) and 𝐸𝑘(𝓁∕𝛼𝑘)
(or 𝑊𝑘(𝓁) and 𝑊𝑘(𝓁∕𝛼𝑘)) for 𝜏𝑘 ≠ 𝜏𝑖 is no smaller than 𝛼𝑘. Motivated by
he example, we need to address the following two challenges to make
he task split improve the schedulability performance: (CH1) how to
pply the task split if 𝑇𝑖∕𝛼𝑖 or 𝐶𝑖∕𝛼𝑖 is not a multiple of the quantum,

and (CH2) how to set 𝛼𝑖 for every task to make 𝜏 schedulable.
For CH1, we apply the sustainability property [11], which holds

for most schedulability algorithms (including) FPS with respect to
increasing 𝑇𝑖 and decreasing 𝐶𝑖. To this end, we consider three task
sets: the original task set 𝜏, a new task set 𝜏′′ with slight adjustment of
{𝑇𝑖} and {𝐶𝑖}, and another new task set 𝜏′ by applying the task split to
𝜏′′. In each 𝜏′′𝑖 ∈ 𝜏′′, 𝑇 ′′

𝑖 is set to ⌊

𝑇𝑖
𝛼𝑖

⌋

⋅𝛼𝑖 and 𝐶 ′′
𝑖 is set to ⌈

𝐶𝑖
𝛼𝑖

⌉

⋅𝛼𝑖.
lso, in each 𝜏′𝑖 ∈ 𝜏′, 𝑇 ′

𝑖 is set to ⌊

𝑇𝑖
𝛼𝑖

⌋

, and 𝐶 ′
𝑖 is set to ⌈

𝐶𝑖
𝛼𝑖

⌉

.
Then, the three task sets have the following relationship. First, if

′ is schedulable, executing 𝜏′′ as if it were 𝜏′ does not yield any job
eadline miss of 𝜏′′. This is because, every 𝑇 ′′

𝑖 and 𝐶 ′′
𝑖 are a multiple

of 𝑇 ′
𝑖 and 𝐶 ′

𝑖 , respectively. Second, if 𝜏′′ is schedulable, 𝜏 is also
chedulable; this holds from the fact that FPS is sustainable with respect
o increasing 𝑇𝑖 and decreasing 𝐶𝑖 [11]. Therefore, the schedulability

of 𝜏′ under FPS guarantees that of 𝜏 under FPS, recorded as follows.

Theorem 1. For every 𝜏𝑘 ∈ 𝜏, we define 𝜏′𝑘 ∈ 𝜏′ such that 𝑇 ′
𝑘 = ⌊

𝑇𝑘
𝛼𝑘

⌋

and
′
𝑘 = ⌈

𝐶𝑘
𝛼𝑘

⌉

. Then, a task set 𝜏 is schedulable by FPS on an 𝑚-processor
platform, if every 𝜏′𝑘 ∈ 𝜏′ has 𝐶 ′

𝑘 ≤ 𝓁 ≤ 𝑇 ′
𝑘 that satisfies Eq. (4).

roof. By Lemma 1, 𝜏′ is schedulable by FPS if the ‘‘if’’ statement holds.
lso, since 𝑇 ′′

𝑖 and 𝐶 ′′
𝑖 are a multiple of 𝑇 ′

𝑖 and 𝐶 ′
𝑖 , respectively, the

chedulability of 𝜏′ implies that of 𝜏′′. Finally, by the sustainability
roperty [11], the schedulability of 𝜏′′ yields that of 𝜏′, which proves
he theorem. □

Then, the next challenge is how to set 𝛼𝑖 for every 𝜏𝑖 ∈ 𝜏 to make
he task set 𝜏′ schedulable by Theorem 1, which is CH2. As explained
rom Example 1, we can utilize the properties of the task split of 𝜏𝑖;
P1) increasing 𝛼𝑖 helps to reduce the interference of 𝜏𝑖 to other tasks,
ut (P2) increasing 𝛼𝑖 makes it difficult for 𝜏𝑖 itself to be schedulable.
herefore, we need to increase 𝛼𝑖 as much as possible by considering
1, but as long as 𝜏𝑖 is schedulable by considering P2, which is achieved
y Algorithm 1. Note that the priority of 𝜏′𝑖 (i.e., split task) is inherited
rom that of 𝜏𝑖 (i.e., original task), meaning that the change of 𝑇 ′

𝑖 does
ot affect the priority of 𝜏′𝑖 ; this conserves the properties P1 and P2,
nd therefore the schedulability improvement by the proposed method
olely comes from the task split, not from the priority change. Initially,
e set every 𝛼𝑘 to 1 in Line 1 (i.e., no task split by default). For each

teration, we check whether each 𝜏′𝑘 ∈ 𝜏′ is schedulable or not (Lines
–11), and return schedulable with {𝛼𝑘} if every 𝜏′𝑘 is schedulable
Lines 12–14); also, if 𝜏′𝑘 is schedulable, we find the largest 𝛼𝑘 without
ompromising the schedulability of 𝜏′𝑘 (Line 16). If there is update of
ny 𝛼𝑘 in the current iteration, we repeat to perform the next iteration;
therwise, we return unschedulable.
Time Complexity. While the time-complexity of RTA for FPS with

q. (4) is 𝑂(𝑛2 ⋅ max𝜏𝑖∈𝜏 𝑇𝑖) [9], that of Algorithm 1 is calculated as
ollows. Lines 5–14 are equivalent to RTA for FPS, yielding 𝑂(𝑛2 ⋅
ax𝜏𝑖∈𝜏 𝑇𝑖) time complexity. Also, Line 16 takes 𝑂(𝑛 ⋅ log 𝛼𝑚𝑎𝑥) by
pplying the binary search; therefore, Lines 15–21 take 𝑂(𝑛2 ⋅ log 𝛼𝑚𝑎𝑥),
hich is no larger than 𝑂(𝑛2 ⋅max 𝑇 ). Finally, since Lines 5–14 and
3

𝜏𝑖∈𝜏 𝑖
Algorithm 1 Assignment of the task split factor {𝛼𝑘}

1: For every 𝜏′𝑘 ∈ 𝜏′, 𝛼𝑘 ← 1.
2: UPDATED← True
3: for UPDATED=True do
4: UPDATED← False
5: for every 𝜏′𝑘 ∈ 𝜏′ do
6: if Eq. (4) holds for 𝜏′𝑘 then
7: SCHE𝑘 ← True
8: else
9: SCHE𝑘 ← False

10: end if
11: end for
12: if SCHE𝑘 =True holds for every 𝜏′𝑘 ∈ 𝜏′ then
13: Return schedulable with {𝛼𝑘}
14: end if
15: for every 𝜏′𝑘 ∈ 𝜏′ | SCHE𝑘 = True do
16: Find the largest 𝛼′

𝑘 ∈ [1, 𝛼𝑚𝑎𝑥] that satisfies Eq. (4) for 𝜏′𝑘
17: if 𝛼′

𝑘 > 𝛼𝑘 then
18: 𝛼𝑘 ← 𝛼′

𝑘
19: UPDATED← True
20: end if
21: end for
22: end for
23: Return unschedulable

Fig. 1. The ratio of task sets proven schedulable by X-RTA𝖳𝖲 and that by X-RTA for
= 2, 4, 8 and 16, where X is RM or TCM.

ines 15–21 can be repeated up to 𝑛 ⋅𝛼𝑚𝑎𝑥 times, the time-complexity of
lgorithm 1 is 𝑂(𝑛3 ⋅max𝜏𝑖∈𝜏 𝑇𝑖 ⋅𝛼𝑚𝑎𝑥). Since we can perform Algorithm 1
ffline, the time-complexity is affordable.
Run-time Overhead. Once we calculate 𝛼𝑘 for every 𝜏𝑘 ∈ 𝜏 in

lgorithm 1, we schedule each 𝜏𝑘 as if it were 𝜏′𝑘 with 𝑇 ′
𝑘 = ⌊

𝑇𝑘
𝛼𝑘

⌋

and
𝐶 ′
𝑘 = ⌈

𝐶𝑘
𝛼𝑘

⌉

. Therefore, it requires little run-time overhead to apply the
proposed method.

3. Evaluation

In this section, we evaluate the effectiveness of the task split method
in finding additional schedulable task sets.

Task set generation. We have two parameters for task set genera-
tion: (i) the number of processors (i.e., 𝑚 = 2, 4, 8 and 16), and (ii) the
distribution of task utilization 𝐶𝑖∕𝑇𝑖 (i.e., the bimodal distribution with
parameters 0.1, 0.3, 0.5, 0.7 and 0.9, and the exponential distribution
with the same parameters). For every combination of (i) and (ii), we
randomly generate 1000 task sets based on the set generation method
in [1,12], yielding 40,000 task sets in total. In each task set, the number
of tasks is at least 𝑚 + 1, and the task set utilization ∑

𝜏𝑖∈𝜏 𝐶𝑖∕𝑇𝑖 is at
most 𝑚. To effectively apply the task split factor 1 ≤ 𝛼𝑖 ≤ 6, we set 𝑇𝑖
and 𝐶𝑖 as a multiple of 60.

Evaluation settings. For each task’s priority under FPS, we con-
sider two representative priority assignment policies, known to be
effective to a multiprocessor platform: (i) the rate monotonic algorithm
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Table 1
The number of task sets proven schedulable by 𝖷−𝖱𝖳𝖠𝖳𝖲, divided by
that by X-RTA, for 𝑚 = 8 under different task utilization distributions,
where X is RM or TCM.

Task utilization distribution
(avg. # of tasks in each task set)

𝖱𝖬−𝖱𝖳𝖠𝖳𝖲

𝖱𝖬−𝖱𝖳𝖠
𝖳𝖢𝖬−𝖱𝖳𝖠𝖳𝖲

∕𝖳𝖢𝖬−𝖱𝖳𝖠

Bino. with 0.1 (17.7) 123.2% 121.4%
Bino. with 0.3 (14.6) 115.3% 115.7%
Bino. with 0.5 (12.7) 114.4% 114.1%
Bino. with 0.7 (11.1) 114.5% 114.3%
Bino. with 0.9 (10.2) 114.9% 105.0%
Exp. with 0.1 (44.1) 123.6% 119.2%
Exp. with 0.3 (20.0) 118.4% 120.0%
Exp. with 0.5 (16.4) 113.8% 114.7%
Exp. with 0.7 (14.9) 111.8% 116.7%
Exp. with 0.9 (14.6) 112.9% 116.5%

All distributions (17.6) 117.1% 116.6%

(denoted by RM) [13] that assigns a higher priority to a smaller period
𝑖, and (ii) the (𝑇𝑖 − 𝐶𝑖) monotonic algorithm (denoted by TCM) that
ssigns a higher priority to a smaller (𝑇𝑖 − 𝐶𝑖) [14]. For the schedula-

bility analysis, we compare the vanilla RTA (i.e., Lemma 1, denoted
by RTA), to the RTA with the task split (i.e., Theorem 1 in which
{𝛼𝑖} is assigned by Algorithm 1, denoted by RTA𝖳𝖲). For the generated
task sets, we count the number of task sets deemed schedulable by the
following pairs of a priority assignment of FPS and a schedulability
analysis: RM-RTA, RM-RTA𝖳𝖲, TCM-RTA and TCM-RTA𝖳𝖲.

Performance in covering schedulable task sets.We make the
following three important observations. First, the proposed task split
method significantly improves the schedulability performance. As
shown in Fig. 1, for every pair of the priority assignment policy of FPS
and the number of processors, RTA𝖳𝖲 finds 16.1%–19.4% additional
schedulable task sets, compared to RTA. This indicates the proposed
task split method is very effective in covering schedulable task sets,
achieving the goal of this paper.

Second, The proposed task split method is effective to both RM
and TCM. If we focus on the evaluation results of Fig. 1(a) and those
of Fig. 1(b), the schedulability performance improvement of RTA𝖳𝖲

ver RTA is 16.1%–17.1% and 16.3%–19.4%, respectively for RM and
CM. Hence, the proposed task split method is robust to the priority
ssignment policy of FPS.

Third, the schedulability performance improvement by the proposed
ethod varies with the task utilization distribution, and there exists
tendency that the method is more effective to task sets in each of
hich the number of tasks is sufficiently large. As shown in Table 1 for

he case of 𝑚 = 8, the exponential distribution with 0.1 and that with
.3, which result in the largest average number of tasks in each task
et (i.e., 44.1 and 20.0, respectively), yield 18.4%–23.6% schedulabil-
ty improvement. On the other hand, the binomial distribution with
.9 and that with 0.7, which result in the smallest average number
i.e., 10.2 and 11.1, respectively) yield only 5.0%–14.9% schedulability
mprovement. This is because, if a task set consists of only a few
asks, the number of tasks which can reduce interference to the target
ask (that is unschedulable without the task split method) is small,
isallowing the target task to be schedulable by the task split. Note
hat we observe a similar trend to other 𝑚.
4

. Conclusion

In this paper, we developed a systematic method of how to improve
chedulability performance via the task split. We demonstrated that the
ethod finds 16.1%–19.4% (on average) additional schedulable task

ets. In the future, we would like to efficiently generalize the method
o constrained-deadline tasks in which the relative deadline is the same
s or smaller than the period.
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