
EDZL Schedulability Analysis
in Real-Time Multicore Scheduling

Jinkyu Lee, Member, IEEE, and Insik Shin, Member, IEEE

Abstract—In real-time systems, correctness depends not only on functionality but also on timeliness. A great number of scheduling

theories have been developed for verification of the temporal correctness of jobs (software) in such systems. Among them, the Earliest

Deadline first until Zero-Laxity (EDZL) scheduling algorithm has received growing attention thanks to its effectiveness in multicore real-

time scheduling. However, the true potential of EDZL has not yet been fully exploited in its schedulability analysis as the state-of-the-art

EDZL analysis techniques involve considerable pessimism. In this paper, we propose a new EDZL multicore schedulability test. We

first introduce an interesting observation that suggests an insight toward pessimism reduction in the schedulability analysis of EDZL.

We then incorporate it into a well-known existing Earliest Deadline First (EDF) schedulability test, resulting in a new EDZL

schedulability test. We demonstrate that the proposed EDZL test not only has lower time complexity than existing EDZL schedulability

tests, but also significantly improves the schedulability of EDZL by up to 36.6 percent compared to the best existing EDZL

schedulability tests.

Index Terms—Earliest Deadline first until Zero-Laxity (EDZL), real-time scheduling, schedulability analysis, multicore platform, real-

time systems

Ç

1 INTRODUCTION

A real-time system is one in which its correctness
depends not only on logic behavior but also on the

time at which results are produced. Real-time systems are
increasingly deployed in many safety-critical environments,
including avionics, automobiles, space engineering, and
medical devices. Over the past several decades, substantial
research has been conducted on real-time scheduling
theories for temporal behavior analysis of real-time systems
[1], [2], [3]. With the increasing popularity of multicore
architectures, there is also growing attention to real-time
scheduling on multicore platforms.

Many real-time scheduling algorithms have been studied
for multicore platforms, and global earliest deadline first
until zero-laxity (EDZL) [4] has great potential for effective
real-time multicore scheduling because it inherently con-
siders both the urgency of real-time jobs and the parallelism
aspect of multicore platform simultaneously [5] with low
runtime overheads [6], [7]. Global EDZL scheduling assigns
the highest priority to zero-laxity jobs and schedules
remaining jobs using earliest deadline first (EDF), where
the laxity of a job at any instant is defined as remaining time
to deadline minus the amount of remaining execution time.
Since EDZL promotes the priority of any job that would
otherwise inevitably miss its deadline (i.e., any zero-laxity

job), it not only dominates1 EDF [7], but also is known to
have a better scheduling performance than other scheduling
algorithms on multicore platforms without incurring many
preemptions [6], [7].

However, the true potential of EDZL has not been fully
utilized in its schedulability analysis, which determines
whether or not all the timing requirements of a given task
set can be satisfied under EDZL scheduling. Existing EDZL
analysis techniques [8], [9], though outperforming their
EDF counterparts significantly, have not matured yet,
making unnecessarily pessimistic schedulability decisions.

The goal of this paper is to develop a new, “good”
schedulability test of EDZL. We first present an important
observation on a task set under EDZL scheduling. This
observation mainly comes from the priority promotion of
zero-laxity jobs, and therefore does not necessarily hold for
other scheduling algorithms (e.g., EDF). Building upon the
observation, we derive a new EDZL schedulability test
based on an existing EDF schedulability test [10] and the
dominance relationship between EDZL and EDF [7].
The proposed EDZL test not only reduces the pessimism
of the state-of-the-art EDZL analysis techniques signifi-
cantly, but also runs in lower time complexity. According to
our simulation results, the proposed test can find up to
36.6 percent more task sets schedulable than the best existing
EDZL schedulability tests can.

The rest of this paper is organized as follows: Section 2
presents our system model and existing EDZL schedul-
ability tests. Section 3 derives an important condition for a
task set to be schedulable by EDZL. Based on the condition,
Section 4 develops a new EDZL schedulability test.
Section 5 evaluates the performance of the proposed EDZL

910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 7, JULY 2013

. J. Lee is with the Department of Electrical Engineering and Computer
Science, The University of Michigan, 2260 Hayward St., Ann Arbor, MI
48109-2121. E-mail: jinkyul@umich.edu.

. I. Shin is with the Department of Computer Science, KAIST, 291
Daehakro, Yuseong-gu, Daejeon 305-701, South Korea.
E-mail: insik.shin@cs.kaist.ac.kr.

Manuscript received 16 Mar. 2012; revised 13 Sept. 2012; accepted 31 Oct.
2012; published online 7 Nov. 2012.
Recommended for acceptance by M. Woodside
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2012-03-0063.
Digital Object Identifier no. 10.1109/TSE.2012.75.

1. A scheduling algorithm or a schedulability test A dominates B if any
task set schedulable by B is also schedulable by A, but the converse is not
true.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

schedulability test in terms of scheduling performance and
time complexity. Section 6 discusses related work, and
finally, Section 7 concludes this paper.

2 BACKGROUND

In this section, we first introduce our system model and
notations. Then, we recapitulate existing EDZL schedul-
ability tests [8], [9].

2.1 System Model and Notations

In this paper, we focus on a sporadic task model [11] in
which a task �i 2 T is specified as ðTi; Ci;DiÞ, where Ti is
the minimum separation, Ci is the worst-case execution
time requirement, and Di is the relative deadline. We
restrict our attention to constrained deadline task sets, i.e.,
Ci � Di � Ti, 8�i 2 T . A task �i invokes a series of jobs, each
separated from its predecessor by at least Ti time units.
Also, each job of �i should finish its execution no later than
Ti time units after its release. We let �i denote Ci=Di. In this
paper, we let jAj denote the number of elements in A, and
thus jT j means the number of tasks in T .

We assume that the platform consists of m identical unit-
speed cores. We also assume that any single job cannot be
executed in parallel.

2.2 Existing EDZL Schedulability Analysis

In this section, we introduce two existing EDZL schedul-
ability tests: a basic test [8], [9] and its improved version [9].
To the best knowledge of the authors, these are the only
existing EDZL schedulability tests which judge whether a
given task set is schedulable or not under EDZL, while
there have been a few studies that address the scheduling
performance of EDZL in a different manner (e.g., the
studies [12], [13] have proven that a theoretical upper
bound of utilization of EDZL-schedulable task sets is no
larger than a certain value).

The existing EDZL schedulability tests use an important
property of EDZL as stated in the following lemma.

Lemma 1. A task set T is schedulable by EDZL on an m-core

platform if there are at most m zero-laxity jobs at any time

instant.

Proof. Since EDZL gives the highest priority to zero-laxity
jobs, the lemma trivially holds. tu

Then, the remaining step is to judge whether a job of a
given task can reach a zero-laxity state or not. To do this,
the existing EDZL schedulability tests calculate the time
duration in the interval between the release time and
deadline of a job of �k when any job of �i is executed and
has higher priority than the job of �k. Fig. 1 shows a
situation for the maximum duration, and it is calculated by
Iiðmaxð0; Dk � SiÞÞ [8], [9], where

IiðlÞ ¼
l

Ti

� �
Ci þmin Ci; l�

l

Ti

� �
Ti

� �
: ð1Þ

Here, Si means the slack between the maximum response
time and deadline of a job of �i. In other words, Ti � Si is the
maximum response time of a job of �i.

Using the maximum duration and Lemma 1, the

following lemma introduces schedulability tests of EDZL

[8], [9].

Lemma 2 (The Existing EDZL Schedulability Tests in [8],

[9]2). A task set T is schedulable by EDZL on an m-core

platform if the following inequality holds for at most

m different tasks �k 2 T :X
�i2T �f�kg

minðIiðmaxð0; Dk � SiÞÞ; Dk � CkÞ � m � ðDk � CkÞ:

ð2Þ

Note that a basic test ([8, Theorem 7] or [9, Theorem 3]) does

not utilize the slack value (i.e., Si ¼ 0 for all �i 2 T), but its

improved version ([9, Fig. 3]) calculates the slack value in an

iterative manner (details are given in [9, Fig. 3]).

Proof. The proof is given in [8], [9]. In summary, for a job

of �k to reach a zero-laxity state, time to deadline should

be the same as the remaining execution time. And, at

each time slot, at least m higher priority jobs’ execution

is needed to block a job of �k’s execution. Hence, the

sum of higher priority jobs’ execution should be at least

m � ðDk � CkÞ for a job of �k to reach a zero-laxity state.

By Lemma 1, if (2) holds for at most m tasks, T is

schedulable by EDZL. tu

The existing EDZL schedulability tests in Lemma 2 are

significant in that they incorporate the property of EDZL in

Lemma 1 into schedulability conditions. However, the

existing tests can be pessimistic (i.e., deeming a schedulable

set unschedulable) due to the overestimation of higher

priority executions. When Iiðmaxð0; Dk � SiÞÞ is calculated,

the worst-case release pattern, where the amount of higher

priority execution of jobs of �i is maximized, is considered

as shown in Fig. 1. Then, these Iiðmaxð0; Dk � SiÞÞ for all

�i 2 T � f�kg are simply added to the LHS of (2), which

implies all the worst-case release patterns can occur at the

same time. For most task sets, this is not true, so such

pessimism grows as the number of tasks increases. We will

discuss such a limitation of the existing tests in Section 5

when our proposed EDZL schedulability test is evaluated.

LEE AND SHIN: EDZL SCHEDULABILITY ANALYSIS IN REAL-TIME MULTICORE SCHEDULING 911

Fig. 1. Situation for the maximum duration in the interval between the
release time and deadline of a job of �k when any job of �i is executed
and has higher priority than the job of �k.

2. A minor error in [8], [9] has been corrected in [14].

3 PROPERTIES OF EDZL

In this section, we derive an important condition for a given
task set to be schedulable by EDZL, which will be a basis for
a new EDZL schedulability test to be developed in Section 4.

To do this, we first present a property of EDZL in the
following lemma.

Lemma 3. If a task set T is schedulable by EDZL on an m-core
platform, there are at most m zero-laxity jobs at any time
instant.

Proof. We prove the contraposition. If there are more than
m zero-laxity jobs at t, at least one zero-laxity job
cannot be executed at t, which results in the job’s
deadline miss. tu

Using the two properties in Lemmas 1 and 3, we derive a
novel condition for a given task set to be schedulable by
EDZL in the following theorem.

Theorem 1. If T 1 is schedulable by EDZL on an m-core
platform, T ¼4 T 1 [T 2 is schedulable by EDZL on an
ðmþ jT 2jÞ-core platform.

Proof. For notational convenience, we let T 01 denote T 1

when T 1 is scheduled by EDZL on an m-core platform,
and let T 001 denote T 1 when T ¼4 T 1 [T 2 is scheduled by
EDZL on an (m+jT 2j)-core platform.

We first prove the following claims, and then prove
the theorem using the claims:

. C1. The response time of a job, which is invoked
by a task in T 001 , is no longer than that of the
corresponding job which is invoked by the
corresponding task in T 01.

. C2. At any time instant, there are at most m zero-
laxity jobs which are invoked by tasks in T 001 .

We first prove C1. Since we restrict our attention to
constrained deadline tasks, each task has at most one
unfinished, ready job at any time instant. This means jobs
which are invoked by tasks in T 2 do not occupy more
than jT 2j cores at any time instant and, in other words, at
least m cores are given to T 001 at any time instant.
Therefore, the number of cores given to T 001 is always no
smaller than that given to T 01. This proves C1.

Now, we prove C2. By Lemma 3, the number of zero-
laxity jobs which are invoked by tasks in T 01 is at most m,
and C1 implies that the number of zero-laxity jobs which
are invoked by T 001 is no larger than that by T 01 at any
time instant. This proves C2.

Since each task has at most one unfinished, ready job
at any time instant, there are at most jT 2j zero-laxity jobs
which are invoked by tasks in T 2 at any time instant. By
C2, there are at most m zero-laxity jobs which are
invoked by tasks in T 001 at any time instant. Therefore, at
any time instant there are at most ðmþ jT 2jÞ zero-laxity
jobs which are invoked by tasks in T ¼4 T 1 [T 2. This
proves the theorem by Lemma 1. tu

Note that the theorem is valid due to the priority
promotion of zero-laxity jobs. That is, since zero-laxity
jobs have the highest priority, we do not care for deadline
satisfaction of jobs in T 2 as long as there are at most

ðmþ jT 2jÞ zero-laxity jobs which are invoked by tasks in
T ¼4 T 1 [T 2. Therefore, the theorem holds for any ZL-
based scheduling algorithm which gives the highest priority
to zero-laxity jobs [5], and does not necessarily hold for
other scheduling algorithms. This property will be detailed
in Section 6.

4 NEW EDZL SCHEDULABILITY ANALYSIS

In this section, we first recapitulate the dominance relation-
ship between EDZL and EDF and an existing EDF
schedulability test [10]. Then, we develop a new schedul-
ability test of EDZL by incorporating the relationship and
the EDF test into Theorem 1.

We now present the dominance relationship between
EDZL and EDF in the following lemma.

Lemma 4 ([7, Theorem 2]). If a task set T is schedulable by
EDF on an m-core platform, then it is also schedulable by
EDZL on the same platform.

Proof. The proof is given in [7, Theorem 2]. In summary, at
any time instant, EDF chooses a set of m jobs with the
earliest deadlines. Then, the set should include all zero-
laxity jobs as long as the task set is schedulable by EDF.
Otherwise, the zero-laxity jobs are supposed to miss their
deadlines. Therefore, EDZL, which gives the highest
priority to zero-laxity jobs and schedules remaining jobs
by EDF, chooses the same jobs as EDF as long as the task
set is schedulable by EDF. tu

We present an existing EDF schedulability test in the
following lemma.

Lemma 5 ([10, Theorem 3], [15, Theorem 4]). A task set T is
schedulable by EDF on an m-core platform if it satisfies the
following condition:X

�i2T
�i � m� ðm� 1Þ �max

�j2T
�j: ð3Þ

Proof. The proof is given in [10, Theorem 3]. tu

Incorporating Lemmas 4 and 5 into Theorem 1, we
develop a new schedulability test of EDZL as stated in the
following theorem.

Theorem 2. A task set T is schedulable by EDZL on an m-core
platform if it satisfies one of the following conditions for
m0 ¼ 1; 2; . . . ;m:X

�i2T 1

�i � m0 � ðm0 � 1Þ �max
�j2T 1

�j; ð4Þ

where

T 1 ¼4 f�i 2 T j�i 62 m�m0 tasks with the largest �ig:

Note (4) is equivalent to (3) when m0 ¼ m.

Proof. We let T 2 denote

f�i 2 T j�i 2 m�m0 tasks with the largest �ig:

Then, it holds that T 1 [T 2 ¼ T and jT 2j ¼ m�m0.

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 7, JULY 2013

Suppose that (4) holds for given m0. Then, by
Lemma 5, T 1 is schedulable by EDF on an m0-core
platform, and then, by Lemma 4, it is also schedulable
by EDZL on the same platform. Then, by Theorem 1, T
is schedulable by EDZL on an m-core (i.e., m0 þ ðm �
m0Þ ¼ m) platform. tu

Note that it can be trivially shown that the EDZL
schedulability test in Theorem 2 dominates the EDF
schedulability test in Lemma 5.

We give an example that shows how the proposed EDZL
schedulability test in Theorem 2 works. We consider a set of
three tasks T ¼ f�1ð10; 9; 10Þ, �2ð10; 6; 10Þ, �3ð5; 2; 5Þg and a
2-core platform, and thus it holds that �1 ¼ 0:9, �2 ¼ 0:6, and
�3 ¼ 0:4. Then, a task set T is deemed not schedulable by
the EDF schedulability test in Lemma 5 since the LHS of (3)
is 0:9þ 0:6þ 0:4 ¼ 1:9, but the RHS is 2� 1 � 0:9 ¼ 1:1. If we
consider m0 ¼ 1 in Theorem 2 (i.e., T 1 ¼ f�2; �3g), (4) holds
since the LHS is 0:6þ 0:4 ¼ 1 and the RHS is 1� 0 � 0:6 ¼ 1.
Therefore, by our EDZL schedulability test in Theorem 2,
we guarantee that T is schedulable by EDZL. Note that T is
deemed not schedulable by both existing EDZL schedul-
ability tests in [8], [9] (i.e., the basic test in Lemma 2 with
Si ¼ 0 and the improved test in the same lemma with Si
assignment according to [9, Fig. 3]).

5 EVALUATION

In this section, we evaluate the performance of the proposed
EDZL schedulability test in comparison with the existing
EDZL schedulability tests in [8], [9]. We first explain how to
generate task sets for simulation, then present simulation
results to compare their schedulability performance, and
finally analyze their time-complexity.

5.1 Task Set Generation

We generate task sets based on a technique proposed earlier
[16] which has also been used in many previous studies (e.g.,
[17], [18], [19]). We have two input parameters: 1) the
number of cores m (2, 4, 8, 16, 32, 48, or 64) and 2) individual
task utilization (Ci=Ti) distribution (bimodal with para-
meter3: 0:1, 0:3, 0:5, 0:7, or 0:9, or exponential with
parameter4: 0:1, 0:3, 0:5, 0:7, or 0:9). For each task, Ti is
uniformly distributed in ½1; Tmax ¼ 1; 000�,Ci is chosen based
on the given bimodal or exponential parameter, andDi is set
to Ti, which means we focus on implicit deadline task sets.

For each combination of parameters 1 and 2, we repeat
the following procedure and generate 100,000 task sets:

1. Initially, we generate a set of mþ 1 tasks.
2. In order to exclude unschedulable sets, we check

whether the generated task set can pass a necessary
feasibility condition of implicit deadline task sets
[20] (i.e.,

P
�i2T �i � m).

3. If it fails to pass the feasibility test, we discard the
generated task set and return to Step 1. Otherwise,

we include this set for evaluation. Then, this set
serves as a basis for the next new set; we create a
new set by adding a new task into the old set and
return to Step 2.

For any given m, 100,000 task sets are created for each
task utilization model, thus generating 1,000,000 task sets in
total for simulation.

5.2 Schedulability Performance and Time
Complexity

We evaluate the performance of three EDZL schedulability
tests: 1) the existing basic EDZL test in Lemma 2 with
Si ¼ 0, 2) the existing improved EDZL test in Lemma 2 with
Si assignment according to [9, Fig. 3], and 3) our proposed
EDZL test in Theorem 2. These tests are, respectively,
annotated as “BCB,” “BCB-I,” and “OURS.” In addition to
the three EDZL schedulability tests, we also include the
EDF test in Lemma 5 (annotated by “GFB-EDF”) since this
test serves as a basis for OURS.

In addition, we have one additional curve: “Tot”
represents the total number of task sets with each task set
utilization (i.e.,

P
�i2T �i). Each plot in Figs. 2 and 3 shows

the number of task sets proven schedulable by each test,
with task set utilization in

X
�i2T

�i � 0:01 �m;
X
�i2T

�i þ 0:01 �m
" !

:

Figs. 2 and 3 show schedulability test results over
varying task utilization models and different numbers of
cores. We first show the results aggregated over all the task
utilization distributions in Figs. 2a and 3a. We then show
the results across individual task utilization models to
investigate them more closely. Among the 10 task utiliza-
tion models, we choose to show three representative
models, where the average task utilization (�i) becomes
the smallest, the medium, and the largest, respectively. In
other words, in those three representative models, the
average number of tasks (n) is the largest, the medium, and
the smallest, respectively. Those three models are exponen-
tial distribution with 0.1 (Figs. 2b and 3b), exponential
distribution with 0.9 (Figs. 2c and 3c), and bimodal
distribution with 0.9 (Figs. 2d and 3d), respectively. Among
the different values of m, we choose to show the results for
m ¼ 2 and 4 since schedulability test results with different
values of m exhibit similar behaviors.

First, we observe that OURS outperforms both BCB and
BCB-I for all cases. On average, OURS finds 32.2 (for m ¼ 2)
and 27.5 percent (for m ¼ 4) more schedulable task sets
compared to BCB, as shown in Figs. 2a and 3a. Further-
more, OURS deems 22.7 (for m ¼ 2) and 18.3 percent (for
m ¼ 4) additional task sets schedulable, which are deemed
not schedulable by BCB-I. On the other hands, there are
only a few task sets (less than 0.2 percent in any case) which
are deemed schedulable by BCB or BCB-I, but not
schedulable by OURS. One example of such a task set is
� ¼4 f�1ð2; 1; 2Þ; �2ð2; 1; 2Þ; �3ð7; 1; 7Þ; �4ð8; 3; 8Þg on a 2-core
platform; the set is deemed unschedulable by OURS, but
schedulable by BCB-I.

However, the degree of improvement may vary with
characteristics of task sets; the improvement of OURS is

LEE AND SHIN: EDZL SCHEDULABILITY ANALYSIS IN REAL-TIME MULTICORE SCHEDULING 913

3. For a given bimodal parameter p, a value for �i is uniformly chosen in
½0; 0:5Þ with probability p, and in ½0:5; 1Þ with probability 1� p.

4. For a given exponential parameter 1=�, a value for �i is chosen
according to an exponential distribution whose probability density function
is � � expð�� � xÞ.

more pronounced when �i is small, as shown in Figs. 2b and
3b (up to 91.4 and 36.6 percent over BCB and BCB-I,
respectively), and is less significant when �i is large, as
shown in Figs. 2d and 3d. This is because BCB and BCB-I
calculate the blocking time of a job of a task by simply
adding worst-case blocking time of jobs of all other tasks;
since such worst cases do not necessarily occur at the same
time, the more tasks the more pessimism. However, OURS
does not result in such pessimism in that OURS may
depend only on

P
�i2T �i and max�i2T �i, but does not

necessarily depend on the number of tasks. In fact, OURS
alleviates the dependency of max�i2T �i because OURS can
exclude the effect of at most m� 1 tasks on schedulability
by setting m0 (1 � m0 � m) for (4).

Another observation is that the schedulability perfor-
mance of GFB-EDF highly depends on max�i2T �i, which is
in accord with (3) itself. When �max (the average value of
max�i2T �i) is small, GFB-EDF even outperforms the existing
EDZL schedulability tests of BCB and BCB-I, as shown in
Figs. 2b and 3b. However, as �max gets larger, the
schedulability performance of GFB-EDF significantly gets
lower, as shown in Figs. 2c and 2d and 3c and 3d. On the
other hand, OURS, although derived from GFB-EDF, does
not highly depend on max�i2T �i, as shown in the figures,
since OURS can be independent of at most m� 1 tasks, as
we mentioned in the previous paragraph.

Now, we derive the time-complexity of OURS. To
calculate (4) for a given m0 requires OðjT jÞ computations,
and in the worst case, (4) can be tested for all 1 � m0 � m.
Therefore, OURS has OðjT j �mÞ time complexity. On the
other hand, BCB and BCB-I have OðjT j2Þ and OðjT j3 �
max�i2T TiÞ time complexity, respectively [9]. Since we
assume jT j > m (otherwise, T is trivially schedulable),
OURS has lower time complexity than both BCB and BCB-I.

In summary, OURS not only requires fewer computa-
tions than BCB and BCB-I, but also significantly improves
the schedulability of EDZL by overcoming the weak points
of BCB and BCB-I.

6 RELATED WORK

As we discussed in the beginning of Section 2.2, the basic
and improved tests in [8], [9] are the only existing
schedulability tests for EDZL. However, the analysis
technique used in this paper is related to previous studies
for different scheduling algorithms, which will be discussed
in this section.

In this paper, Theorem 1 presented a key property of
EDZL, which is a basis for the new schedulability test of
EDZL: If T 1 is schedulable by EDZL on an m-core platform,
T 1 [T 2 is schedulable by EDZL on an ðmþ jT 2jÞ-core
platform. Here, the most important point is that we do not

914 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 7, JULY 2013

Fig. 2. Schedulability performance of schedulability tests for m ¼ 2.

need to care for the schedulability of tasks in T 2 as long
as additional jT 2j cores are provided. A similar property has
been identified for some scheduling algorithms such
as EDF-US [21], EDFðkÞ [10], and fpEDF [22]. Those studies

share an approach of task-level priority promotion. That is,
they assign the highest task-level fixed-priority to at most
m� 1 tasks. This way, a clear separation is made statically
between at most m� 1 highest priority tasks and the other
remaining lower priority tasks. This allows us to carry out
schedulability analysis for the remaining tasks in isolation,
excluding at mostm� 1 highest priority tasks with the same
number of cores.

However, despite potential improvement of schedul-

ability tests, it has not been proven that such a technique is

applicable to the scheduling algorithms that do not employ

such task-level priority promotion. For example, EDZL

promotes the priorities of jobs dynamically according to

their laxity values. Thereby, the contribution of this paper

is to extend the technique of analyzing the schedulability

of a task subset in isolation toward the job-level dynamic-

priority scheduling case from the task-level fixed-priority

scheduling case. The technique, incorporated into the

dominance relationship between EDZL and EDF, derived

a new EDZL schedulability test based on a popular

schedulability test for EDF, which is another contribution
of this paper.

7 CONCLUSION

In this paper, we have developed a new schedulability test of
EDZL. Compared to existing EDZL schedulability tests, the
proposed test remarkably improves schedulability of implicit
deadline task sets under EDZL with low time complexity.

Our future work includes development of new techni-
ques to improve the schedulability of EDZL for more
general task systems (e.g., arbitrary deadline task sets in
which the relative deadline of each task is determined
regardless of its period). This would require investigating
new inherent EDZL properties for more general task
systems and deriving efficient EDZL schedulability analysis
based on the properties.

ACKNOWLEDGMENTS

Insik Shin is the corresponding author. This work was
supported in part by BRL (2009-0086964), BSRP (2010-
0006650, 2012-R1A1A1014930), NCRC (2012-0000980),
NIPA (H0503-12-1041), KEIT (2011-10041313), DGIST CPS
Global Center, and KIAT (M002300089) funded by the
Korea Government (MEST/MKE).

LEE AND SHIN: EDZL SCHEDULABILITY ANALYSIS IN REAL-TIME MULTICORE SCHEDULING 915

Fig. 3. Schedulability performance of schedulability tests for m ¼ 4.

REFERENCES

[1] C. Liu and J. Layland, “Scheduling Algorithms for Multi-
Programming in a Hard-Real-Time Environment,” J. ACM,
vol. 20, no. 1, pp. 46-61, 1973.

[2] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S.L. Min, R. Ha, S. Hong,
C.Y. Park, M. Lee, and C.S. Kim, “Bounding Cache-Related
Preemption Delay for Real-Time Systems,” IEEE Trans. Software
Eng., vol. 27, no. 9, pp. 805-826, Sept. 2001.

[3] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A.K. Mok, “Real Time
Scheduling Theory: A Historical Perspective,” Real-Time Systems,
vol. 28, no. 2/3, pp. 101-155, 2004.

[4] S.K. Lee, “On-Line Multiprocessor Scheduling Algorithms for
Real-Time Tasks,” Proc. IEEE Region 10’s Ninth Ann. Int’l Conf.,
pp. 607-611, 1994.

[5] J. Lee, A. Easwaran, I. Shin, and I. Lee, “Zero-Laxity Based Real-
Time Multiprocessor Scheduling,” J. Systems and Software, vol. 84,
no. 12, pp. 2324-2333, 2011.

[6] S. Cho, S.-K. Lee, S. Ahn, and K.-J. Lin, “Efficient Real-Time
Scheduling Algorithms for Multiprocessor Systems,” IEICE Trans.
Comm., vol. E85-B, no. 12, pp. 2859-2867, 2002.

[7] M. Park, S. Han, H. Kim, S. Cho, and Y. Cho, “Comparison of
Deadline-Based Scheduling Algorithms for Periodic Real-Time
Tasks on Multiprocessor,” IEICE Trans. Information and Systems,
vol. E88-D, pp. 658-661, 2005.

[8] M. Cirinei and T.P. Baker, “EDZL Scheduling Analysis,” Proc.
Euromicro Conf. Real-Time Systems, pp. 9-18, 2007.

[9] T.P. Baker, M. Cirinei, and M. Bertogna, “EDZL Scheduling
Analysis,” Real-Time Systems, vol. 40, pp. 264-289, 2008.

[10] J. Goossens, S. Funk, and S. Baruah, “Priority-Driven Scheduling
of Periodic Task Systems on Multiprocessors,” Real-Time Systems,
vol. 25, no. 2/3, pp. 187-205, 2003.

[11] A. Mok, “Fundamental Design Problems of Distributed Systems
for the Hard-Real-Time Environment,” PhD dissertation, Massa-
chusetts Inst. of Technology, 1983.

[12] H.-W. Wei, Y.-H. Chao, S.-S. Lin, K.-J. Lin, and W.-K. Shih,
“Current Results on EDZL Scheduling for Multiprocessor Real-
Time Systems,” Proc. IEEE Int’l Conf. Embedded and Real-Time
Computing Systems and Applications, pp. 120-130, 2007.

[13] Y.-H. Chao, S.-S. Lin, and K.-J. Lin, “Schedulability Issues for
EDZL Scheduling on Real-Time Multiprocessor Systems,” In-
formation Processing Letters, vol. 107, pp. 158-164, 2008.

[14] S. Kato and N. Yamasaki, “Global EDF-Based Scheduling with
Efficient Priority Promotion,” Proc. IEEE Int’l Conf. Embedded and
Real-Time Computing Systems and Applications, pp. 197-206, 2008.

[15] M. Bertogna, M. Cirinei, and G. Lipari, “Improved Schedulability
Analysis of EDF on Multiprocessor Platforms,” Proc. Euromicro
Conf. Real-Time Systems, pp. 209-218, 2005.

[16] T.P. Baker, “Comparison of Empirical Success Rates of Global vs.
Paritioned Fixed-Priority and EDF Scheduling for Hand Real
Time,” Technical Report TR-050601, Dept. of Computer Science,
Florida State Univ., Tallahasee, 2005.

[17] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability Analysis of
Global Scheduling Algorithms on Multiprocessor Platforms,”
IEEE Trans. Parallel and Distributed Systems, vol. 20, no. 4,
pp. 553-566, Apr. 2009.

[18] J. Lee, A. Easwaran, and I. Shin, “Laxity Dynamics and LLF
Schedulability Analysis on Multiprocessor Platforms,” Real-Time
Systems, vol. 48, no. 6, pp. 716-749, 2012.

[19] J. Lee, A. Easwaran, and I. Shin, “Maximizing Contention-Free
Executions in Multiprocessor Scheduling,” Proc. IEEE Real-Time
Technology and Applications Symp., pp. 235-244, 2011.

[20] S. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel, “Propor-
tionate Progress: A Notion of Fairness in Resource Allocation,”
Algorithmica, vol. 15, no. 6, pp. 600-625, 1996.

[21] A. Srinivasan and S. Baruah, “Deadline-Based Scheduling of
Periodic Task Systems on Multiprocessors,” Information Processing
Letters, vol. 84, no. 2, pp. 93-98, 2002.

[22] S.K. Baruah, “Optimal Utilization Bounds for the Fixed-Priority
Scheduling of Periodic Task Systems on Identical Multiproces-
sors,” IEEE Trans. Computers, vol. 53, no. 6, pp. 781-784, June 2004.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 7, JULY 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

