
Recursive Partitioned Scheduling
for Real-Time Gang Tasks

Seongtae Lee
Dept. of Computer Science & Engineering

Sungkyunkwan University
Republic of Korea
yuns0509@skku.edu

Nan Guan
Dept. of Computer Science

City University of Hong Kong
Hong Kong SAR

nanguan@cityu.edu.hk

Jinkyu Lee∗
Dept. of Computer Science & Engineering

Yonsei University
Republic of Korea

jinkyu.lee@yonsei.ac.kr

Abstract—The development of parallel computing architec-
tures has created a growing need for scheduling real-time gang
tasks, in which a specified number of threads per task must
be executed simultaneously under timing constraints. However,
existing approaches struggle to handle a fundamental challenge—
the heterogeneity in the number of threads across gang tasks.
To address the challenge, this paper proposes a novel schedul-
ing framework, called Recursive Partitioned Scheduling (RPS),
in which each partition can be recursively divided into sub-
partitions whose assigned processor sets are disjoint and collec-
tively equal to that of the parent, forming a tree-like hierarchical
structure. RPS provides a flexible interface that allows each task
to be assigned to an appropriate level in the hierarchy based on
the number of threads it requires. To fully exploit RPS, we adopt
fixed-priority scheduling and address two key issues. First, we
develop a tight schedulability analysis, which not only utilizes the
well-known exact schedulability analysis results for uniprocessor
scheduling but also leverages the relationship between intra-
and inter-partition interference. Second, based on the insights
from the analysis, we design an effective partition generation
and task assignment algorithm specialized for RPS, and further
enhance it through task priority reassignment. Simulation results
demonstrate that our approach significantly outperforms existing
approaches in terms of schedulability.

I. INTRODUCTION

Due to advances in parallel computing architectures [1],
[2], gang scheduling has been widely studied in the real-
time systems area, in which the pre-defined number of threads
of a gang task should be executed on different processors
at the same time. A fundamental challenge in guaranteeing
the timeliness of gang tasks arises from the heterogeneity of
tasks in terms of the number of threads to be executed in
parallel, as the problem of scheduling gang tasks with the
same number of threads reduces to scheduling non-parallel
tasks (each occupying only one processor) on multiprocessors.
To address the challenge, there are two primary directions
that leverage different processor-task mapping modes: (i) the
global scheduling in which the threads of a gang task can
be executed on any set of processors at run-time [3]–[9],
and (ii) the stationary scheduling in which a task should be
executed on a designated set of processors whose number is
the same as that of threads of the task [10]. Recently, a third

*Jinkyu Lee (corresponding author) initiated this work while affiliated with
Sungkyunkwan University.

approach, known as Strictly Partitioned Scheduling (SPS), has
gained attention due to its empirically superior schedulability
performance [11], where gang tasks and processors are stati-
cally divided into disjoint sets, allowing each partition to be
scheduled independently.1

Although SPS is conceptually simple, it has opened a new
avenue for gang scheduling. From the perspective of decom-
position, it provides a framework that allows each partition to
be scheduled using global or stationary scheduling or, alter-
natively, to execute tasks exclusively (therefore reducing the
scheduling problem to uniprocessor scheduling and utilizing
its exact schedulability analysis). However, SPS has inherent
limitations in addressing the fundamental challenge of gang
scheduling—the heterogeneity of tasks with respect to the
number of threads, as follows.

L1. If there exists even a single task whose number of
threads is equal to (or close to) the total number of
processors, partitioning becomes infeasible. In such cases,
the scheduling problem reverts to global or stationary
scheduling, negating the advantages of SPS.

L2. Even when partitioning is possible, significant variation in
the number of threads among tasks within a partition can
lead to poor schedulability performance. That is, if tasks
are scheduled exclusively within the partition, under-
utilization is inevitable; alternatively, applying global
or stationary scheduling within a partition inherits the
pessimism in calculating interference.

To address the limitations of SPS, we propose a novel
scheduling framework, called Recursive Partitioned Schedul-
ing (RPS), for real-time gang tasks. While SPS allows only
a single level of disjoint partitions, RPS adopts a tree-like
hierarchical structure with partitions organized across multiple
levels. Specifically, each partition in RPS can be recursively
subdivided into disjoint partitions at the next level. A task is
then assigned to one of the partitions located at any level in
this hierarchy, based on the number of threads it requires. RPS
is a generalization of SPS, as it becomes equivalent to SPS

1For non-parallel tasks (each occupying only one processor), the concepts
of strictly partitioned and stationary scheduling in gang scheduling can be in-
terpreted as clustered scheduling [12] and partitioned scheduling, respectively.

135

2025 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/25/$31.00 ©2025 IEEE
DOI 10.1109/RTSS66672.2025.00020

20
25

 IE
EE

 R
ea

l-T
im

e
Sy

st
em

s S
ym

po
siu

m
 (R

TS
S)

 |
 9

79
-8

-3
31

5-
96

42
-2

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RT
SS

66
67

2.
20

25
.0

00
20

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

when task assignments are restricted to only the first-depth
partitions.

Although RPS provides a flexible interface that addresses
the limitations L1 and L2, realizing its full potential requires
careful management of direct/indirect interference among
tasks assigned to same/different partitions. Therefore, the
effectiveness of RPS heavily depends on two key components:
(i) the proper selection of a prioritization policy in conjunction
with a processor-task mapping mode, and (ii) the development
of partition generation and task assignment algorithms that col-
lectively minimize such interference. For (i), we adopt fixed-
priority exclusive-execution scheduling for RPS (RPS-FP-EE).
Since interference only occurs from higher-priority tasks to
lower-priority ones under FP, combining FP with exclusive
execution, where only one task can be executed in each parti-
tion, has the potential to minimize or even eliminate cascading
interference across partitions. For (ii), to be specialized for
RPS-FP-EE, we identify the following questions for design
requirements.
R1. In RPS-FP-EE, what is the relationship between intra-

partition and inter-partition interference, and how can we
develop a schedulability analysis that accurately models
and effectively leverages this relationship?

R2. Based on the insights from R1, how can we design
an effective partition generation and task assignment
algorithm under a given fixed-priority ordering?

R3. Extending R2, how can we further enhance the partition-
ing and assignment process by actively incorporating pri-
ority reassignment to efficiently exploit the schedulability
analysis framework developed in R1?

To address R1, we classify higher-priority tasks that influ-
ence the execution of a target task into two categories: DHP
and IHP (Directly/Indirectly interfering Higher-Priority tasks).
This classification enables a structured understanding of the
relationship between intra-partition and inter-partition interfer-
ence. Building upon the notions of DHP and IHP, we propose
a method for identifying the largest subset of higher-priority
tasks to which tight interference analysis can be applied,
leveraging the exact interference bounds from uniprocessor
FP scheduling. To this end, we formally derive the necessary
conditions that such a subset must satisfy with respect to
DHP and IHP relationships. By applying tight interference
analysis to the identified subset, we develop a schedulability
test for RPS-FP-EE that accurately and interpretably captures
cascading interference across partitions.

For R2, we design a partitioning and task assignment
strategy that realizes the full potential of RPS under FP-EE.
Specifically, we propose a hierarchical algorithm that incre-
mentally constructs partition trees (with their root partitions).
Each task is first assigned to an existing schedulable partition
whenever possible. If no such partition exists, the algorithm
either creates a new partition tree or subdivides an existing
partition to accommodate the task. This process preserves
schedulability at every step by applying the developed tight
schedulability analysis. The algorithm also accounts for both
task parallelism (the number of threads it requires) and intra-

/inter-partition interference, guiding partitioning and task-to-
partition mapping decisions.

To address R3, we investigate how task priorities influence
the schedulability under the answers of R1 and R2. We identify
specific tasks whose priorities significantly affect interference
bounds, and mitigate analysis pessimism by promoting their
priorities in the process of performing the proposed parti-
tioning & task assignment framework. This enhancement is
integrated through systematic modifications, ensuring both
compatibility with the original framework and correctness of
schedulability.

We evaluate the schedulability performance of our partition-
ing & task assignment algorithm (i.e., the answer of R2) and its
improved version with priority reassignment (i.e., the answer
of R3), both of which leverage the proposed schedulability
analysis for RPS-FP-EE (i.e., the answer of R1). Our approach
demonstrates superior schedulability performance compared
to state-of-the-art methods, particularly when task parallelism
heterogeneity is significant.

This paper makes the following key contributions.
• Development of a novel concept of recursive partitioned

scheduling (RPS) and strategies for its effective use.
• Design of a schedulability analysis tailored for

RPS-FP-EE,
• Proposal of an effective partitioning and task assignment

method based on the developed analysis,
• Enhancement of RPS-FP-EE performance through prior-

ity reassignment, and
• Demonstration of the effectiveness of the proposed

RPS-FP-EE via extensive simulation studies.

II. SYSTEM MODEL

We consider a system of m identical processors Π =
{Px}mx=1, executing sporadic rigid gang tasks τ = {τi}ni=1,
as widely used (e.g., [6], [8]–[11]). Each task τi invokes a
series of jobs with the minimum inter-arrival time (or period)
Ti, the worst case execution time Ci, the relative deadline
Di, and the parallelism mi. Once a job of τi is released
at t, it should be performed for at most Ci time units no
later than its absolute deadline at t +Di; also, whenever the
job of τi is performed, it requires mi threads to be executed
simultaneously on different mi processors. We target a set of
implicit-deadline (i.e., Di = Ti) or constrained-deadline (i.e.,
Di ≤ Ti) tasks. We call a job active at t, if it has remaining
execution at t. The response time of τi (denoted by Ri) is an
upper bound of the time interval length between the release
and finishing time of all jobs invoked by τi; therefore, a job of
τi released at t finishes its execution by t+Ri. Although the
concept of RPS can be applied to non-preemptive scheduling,
this paper focuses on the preemptive setting, meaning that
every job is preemptable without any preemption cost. Let
|X| denote the number of elements in X .

A task set τ is said to be schedulable by a scheduling
algorithm on m processors, if there is no single job deadline
miss for every legal job sequence generated by τ when it is
scheduled by the scheduling algorithm on m processors.

136

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

III. RECURSIVE PARTITIONED SCHEDULING (RPS)

In this section, we present our design of RPS and provide
a roadmap for achieving its full potential.

A. Designing RPS

RPS consists of two key components: (i) constructing par-
titions and (ii) mapping tasks to partitions. In the partition
construction aspect, while strict partitioned scheduling (SPS)
divides the entire processor set Π into disjoint partitions, re-
cursive partitioned scheduling (RPS) introduces a hierarchical
structure by recursively subdividing each partition into sub-
partitions, enabling further division at each depth level. In
RPS, the outermost disjoint partitions—referred to as partition
trees and corresponding to the disjoint partitions in SPS—are
formally defined as follows.

Definition 1: Under RPS, the entire processor set Π is
disjointly assigned to a set of partition trees T R = {T Rr}. A
set of processors assigned to a partition tree T Rr is denoted
by A(T Rr). By definition, A(T Rr) ∩ A(T Rp) = ∅ holds
for r ̸= p, and

⋃
∀rA(T R

r) = Π holds.

Then, each partition tree can be divided in a recursive
manner, formally as follows.

Definition 2: Under RPS, a partition tree T Rr with an
assigned processor set A(T Rr) has a root node (i.e., root
partition) whose assigned processors are identical to those
of the partition tree itself. Each parent partition in T Rr can
be recursively subdivided into a set of child partitions whose
assigned processor sets are disjoint and collectively equal to
that of the parent.

Each partition in T Rr is denoted by ρrv , where v is the
partition index. For simplicity, we use ρv when the partition
tree index r is not required for clarity.

From the task mapping perspective, we design RPS so that
each task is mapped to leaf partition(s) as follows.

Definition 3 (Task-partition mapping): Under RPS, each
task τi is assigned to exactly one partition tree. Within the
assigned partition tree, a task is mapped to at least one
(possibly multiple) leaf nodes (i.e., leaf partitions); let mi(ρv)
denote the number of processors allocated to τi within the
given leaf partition ρv (See Example 2 in this section and
Example 4 in the next section). Also, let L(T Rr) denote the
set of leaf partitions in T Rr. The total number of processors
assigned to a set of leaf partitions to which each task τi is
mapped must be no less than mi; otherwise, τi is not eligible
for execution.

Under RPS, most (if not all) task scheduling strategies
can be applied independently within each partition tree; this
includes a combination of (i) scheduling modes such as global,
stationary, or exclusive-execution scheduling and (ii) prioriti-
zation schemes such as FP and EDF. An important requirement
is that a prioritization order must be defined among jobs that
share the same partition.

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5

P1 P2 P3

P9

P6 P7 P8 P9

Fig. 1: Illustration of hierarchical structure and task-partition
mapping in RPS

We assume each task τi utilizes at least one processor from
each of its assigned partitions whenever it is executed. If this
condition is not met, it implies that at least one of the assigned
partitions is redundant and should not have been assigned to
τi. For notations, let L(τi) denote a set of leaf partitions that τi
belongs to. Also, let A(ρv), |A(ρv)|, and τ(ρv) denote a set of
processors assigned to ρv , the number of processors assigned
to ρv , and a set of tasks that belong to ρv , respectively.

Example 1: Fig. 1 illustrates an example of an RPS struc-
ture, consisting of two partition trees T R1 and T R2, with
A(T R1)={P1, P2, P3, P4, P5} and A(T R2)={P6, P7, P8}.
Within T R1, there are five partitions ρ11 to ρ15, where ρ11 is the
root partition, and ρ13, ρ14, and ρ15 are leaf partitions. Likewise,
T R2 has three partitions: the root partition ρ21, and the leaf
partitions ρ22 and ρ23. Note that if a partition tree consists of
only a root partition, the root partition also serves as a leaf
partition.

Example 2: Here is an example of a task-to-partition
mapping. There are a set of tasks τ1 with m1=4, τ2 with
m2=2, τ3 with m3=3, and τ4 with m4=2, mapped to T R2

in Fig. 1 as follows. L(τ1)={ρ22, ρ23} with m1(ρ
2
2)=2, and

m1(ρ
2
3)=2, L(τ2)={ρ22} with m2(ρ

2
2)=2, L(τ3)={ρ22, ρ23}

with m3(ρ
2
2)=2, and m3(ρ

2
3)=1, and L(τ4)={ρ23} with

m4(ρ
2
3)=2.

We design RPS so that tasks are assigned only to leaf nodes.
However, if all child nodes of an intermediate node ρv are
among the nodes to which a task τi is assigned, then τi can
be regarded as being assigned to the intermediate node ρv .
This allows the task assignment to be equivalently expressed
as if tasks could be assigned to intermediate nodes. For
example, if RPS were designed to allow tasks to be assigned
to intermediate nodes, τ1 and τ3 in Fig. 1 could be regarded
as being assigned to {ρ21} instead of {ρ22, ρ23}. Note that when
a task is assigned to {ρ13, ρ14}, it is not equivalent to being
assigned to {ρ11}.

Lemma 1: RPS has the following properties.

• RPS is a generalization of SPS.
• The execution of a task within a given partition tree does

not affect the execution of tasks in other partition trees,
ensuring inter-tree isolation.

137

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

Proof: The SPS is equivalent to RPS when every partition
tree contains only a root partition, without any further subdi-
vision. Inter-tree isolation is ensured by the non-overlapping
processor sets between partition trees (by Definition 1) and
the unique assignment of each task to a single tree (by
Definition 3).

B. Leveraging RPS

RPS provides a flexible interface that allows each task to
be assigned to an appropriate level in the hierarchy based on
the number of threads it requires. This results in the following
pros and cons.

• Pros: By recursively dividing a parent partition into child
partitions, RPS ensures that there is no direct interference
between tasks assigned only to different child partitions,
offering significant potential for improving schedulability.

• Cons: Since each task can be assigned to multiple
partitions, indirect interference can occur. For example,
consider τk belongs to ρr1 and ρr2, and τi belongs to ρr2 and
ρr3 in T Rr. Then, τh(̸= τk) belonging to ρr1 may affect
the execution of τg(̸= τi) belonging to ρr3, even though
τh and τg do not share any partition; this is because of
the existence of τk and τi that shares the same partition
ρr2.

To leverage the advantage while mitigating the disadvantage
for RPS, we adopt FP as a prioritization policy and EE
(exclusive execution) as a scheduling mode, i.e., RPS-FP-EE.

• Prioritization: Under FP, interference occurs only in one
direction—from higher-priority to lower-priority tasks.
This property can be effectively exploited in the par-
titioning and task assignment to minimize cascading
direct/indirect interference.

• Scheduling mode: Under EE, only one task can be
executed in each partition. Due to its simplicity, EE
not only reduces run-time scheduling overhead, but also
provides a foundation for simplifying and tightening the
schedulability analysis to be developed.

In the following sections, we aim to maximize the schedula-
bility performance of RPS-FP-EE through the following steps.

• We develop a schedulability analysis that tightly and
interpretably captures cascading interference across par-
titions under a given fixed-priority assignment (Sec-
tion IV).

• Building on this analysis, we propose a partitioning
and task-to-partition mapping strategy that considers cas-
cading interference under the fixed-priority order (Sec-
tion V).

• We further extend our approach by incorporating priority
reassignment across partitions to more effectively miti-
gate cascading interference (Section VI).

IV. SCHEDULABILITY ANALYSIS FOR RPS-FP-EE

Under RPS, a task τi cannot affect the execution of an-
other task τk, if they belong to different partition trees (by
Lemma 1). Therefore, targeting a task set τ within a partition

tree executed on m processors, this section analyzes the
properties of RPS-FP-EE and then develops a schedulability
analysis for RPS-FP-EE. Throughout the remainder of this
paper, we assume a fixed-priority assignment where tasks with
smaller indices have higher priority without loss of generality;
i.e., τ1 has the highest priority and τn the lowest.

A. Properties of RPS-FP-EE

Under RPS-FP-EE, while it is straightforward that every
task whose priority is lower than τk cannot affect the execution
of τk due to the prioritization of FP, there are two types of
higher-priority tasks whose execution affects the execution of
τk either directly or indirectly.

Definition 4: DHP(τk) and IHP(τk) are defined as follows.

• DHP(τk) (Directly interfering Higher-Priority task set): a
set of higher-priority tasks of τk that cannot be executed
with τk at the same time, which is formally defined as a
set of τi ∈ τ such that (i) τi has a higher priority than
τk (i.e., i<k) and (ii) τi is assigned to at least one of the
same leaf partitions as τk is assigned, i.e., DHP(τk) =⋃

ρv∈L(τk)
{τi ∈ τ(ρv)|i<k}.

• IHP(τk): (Indirectly interfering Higher-Priority task set):
a set of higher-priority tasks not in DHP(τk), each of
which belongs to DHP of DHP of τk, DHP of DHP of
DHP of τk, or so on, which is formally defined as a set of
τi ∈ τ \DHP(τk) such that there exists a DHP sequence of
tasks τi1 , τi2 , ..., τiq such that (i) τi1=τi, (ii) τiq=τk, and
(iii) τip ∈ DHP(τip+1) holds for every p = 1, 2, ...q − 1.

Example 3: Consider a set of tasks {τ1, τ2, τ3}, assigned
to T R1 in Fig. 1 as follows: L(τ1) = {ρ14, ρ15}, L(τ2) =
{ρ13, ρ14, ρ15} and L(τ3) = {ρ13}. Then, DHP(τ3)={τ2} and
DHP(τ2)={τ1} hold. On the other hand, IHP(τ3)={τ1} holds,
since (i) τ1 has a higher priority than τ3, (ii) τ1 does not
belong to DHP(τ3), and (iii) the DHP task sequence exists
(i.e., τ2 ∈ DHP(τ3) & τ1 ∈ DHP(τ2)). Therefore, although τ1
does not directly interfere τ3, it can affect the execution of τ3
by directly interfering τ2 that directly interferes τ3.

Lemma 2: Under RPS-FP-EE, the following properties hold.

• DHP(τk) ∩ IHP(τk) = ∅.
• The execution of τk is indepedent of any task that does

not belong to DHP(τk) ∪ IHP(τk).
Proof: The properties hold immediately by the definition

of DHP(τk) and IHP(τk).

Using the above definitions and properties, we establish the
following design principles for the schedulability analysis:

• Leveraging the relationship between DHP and IHP to
construct an interference-aware schedulability analysis,

• Exploiting the tightness of the existing exact uniprocessor
FP schedulability analysis as much as possible, and

• Formalizing these relationships to guide partitioning and
task-to-partition assignment in a manner that improves
overall schedulability.

138

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

P6

P7

P8

P9

t = 0 2 4 6 8 10 12 14 16 18

τ1 τ2 τ3 τ4

(a) Schedule with the synchronous job release

P6
P7
P8
P9

t = -2 0 2 4 6 8 10 12 14 16 18

(b) Schedule with the non-synchronous job release

Fig. 2: An example of schedules under RPS-FP-EE

In the next subsections, we first investigate which ex-
isting results can be applicable to RPS-FP-EE. Based on
the investigation, we derive a tight schedulability analysis
for RPS-FP-EE by utilizing the exact schedulability analysis
results for uniprocessor scheduling while leveraging the rela-
tionship between DHP and IHP. Before proceeding, we define
the validity of a task-to-partition assignment, as follows.

Definition 5: A task-to-partition assignment from τ to T Rr

is said to be valid, if the following two conditions hold for
every τi ∈ τ : (i) the total number of processors assigned
to τi across all its partitions must be equal to mi (i.e.,∑

ρv∈L(τi)
mi(ρv) = mi), and (ii) the number of processors

assigned to τi in each partition must not exceed the size of that
partition (i.e., mi(ρv) ≤ |A(ρv)| holds for every ρv ∈ L(τi)).

B. Existing Results: To Be and Not To Be Utilized

Consider a set of tasks that share the same leaf partition(s).
Then, RPS-FP-EE is equivalent to FP uniprocessor scheduling
designed for non-parallel tasks, which makes it possible to
utilize its exact schedulability analysis [13] as follows.

Lemma 3 (from [13]): Suppose a set of tasks τ is scheduled
under RPS-FP-EE within a partition tree T Rr, where the task-
to-partition assignment from τ to T Rr is valid. Consider that
all tasks share the same set of leaf partitions L(τk). Then, τ
is schedulable, if there exists Rk ≤ Dk that satisfies Eq. (1)
for every τk ∈ τ .

Rk = Ck +
∑

τi∈DHP(τk)

INO-CIi (Rk), (1)

where INO-CIi (ℓ) (interference of τi in an interval of length ℓ
without any carry-in2 job) can be calculated by

INO-CIi (ℓ) =

⌈
ℓ

Ti

⌉
· Ci. (2)

Since every task is executed on the same partition(s),
DHP(τk) is a set of all tasks whose priority is higher than
τk, i.e., DHP(τk) = {τi ∈ τ |i < k}.

2A job is said to be carry-in for an interval, if it is released before the
interval but has remaining execution at the beginning of the interval.

TABLE I: An example of a task set assigned to a partition
tree

Task Ti Ci Di mi L(τi) mi(ρv)
τ1 3 1 3 4 {ρ22, ρ23} m1(ρ22) = 2,m1(ρ23) = 2
τ2 5 2 5 2 {ρ22} m2(ρ22) = 2
τ3 9 2 9 3 {ρ22, ρ23} m3(ρ22) = 2,m3(ρ23) = 1
τ4 18 8 18 2 {ρ23} m4(ρ23) = 2

The lemma holds by the well-known response time analysis
for FP uniprocessor scheduling in [13], where Rk in Eq. (1)
is obtained by a fixed-point iteration: starting with Rk = Ck

on the RHS (Right-Hand-Side) of Eq. (1), the value of
Rk is iteratively updated on the LHS (Left-Hand-Side) until
convergence. The second term of the RHS of Eq. (1) does not
include the contribution of any carry-in job of τi in the target
interval of length ℓ. This is because of a well-known result for
FP uniprocessor scheduling: a critical instant of τk (in which
the response time of τk is maximized) happens when every
task whose priority is higher than τk is released at the same
time of the job of interest of τk [14]. However, as shown in
the following example, the result does not generally hold for
RPS-FP-EE.

Example 4: Consider the following four tasks {τ1, τ2, τ3, τ4}
from Example 2, allocated in a partition tree T R2 with four
processors {P6, P7, P8, P9}, shown in Fig. 1 and Table I,
scheduled by RPS-FP-EE.

Since τ4 is executed on ρ23, τ2 executed on ρ22 does not
belong to DHP(τ4). If we calculate R4 based on Lemma 3, we
find R4 = 18 such that C4+

⌈
18
T1

⌉
·C1+

⌈
18
T3

⌉
·C3 = 8+6 ·1+

2 · 2 = 18 holds in Eq. (1). Note that it is easily checked that
the highest-priority tasks τ1 and τ2 are schedulable. Fig. 2(a)
illustrates the schedule of [0, 18) where the first job of every
task is released at t = 0 and the following jobs are released
periodically, which seems to support the above result where
τ4 is schedulable (i.e., R4 = 18 ≤ D4 = 18).

However, τ4 is actually not schedulable (i.e., R4 = 18 is
wrong), as shown in Fig. 2(b) in which the jobs of τ2 and τ3
are periodically released from t = −2 while the jobs of τ1 and
τ4 are periodically released from t = 0. In [0, 18), the job of
τ4 executes only for 6 units instead of C4 = 8 units, resulting
in a job deadline miss.

Why is Lemma 3 wrong in the example? This is due to the
existence of τ2 that belongs to IHP(τ4); although τ2 cannot
directly prevent τ4 from executing by competing with at least
one partition commonly assigned to both τ2 and τ4, τ2 is
capable of changing the execution pattern of τ3 that directly
interferes with τ4. Therefore, we cannot guarantee that the
critical instant for τ4 occurs when a job of τ3 is released at the
same time instant, which was demonstrated in the job deadline
miss of τ4 in Fig. 2(b).

One simple approach to address the above problem is to
apply the largest possible interference (i.e., ICIi (ℓ) in Eq. (3))
from every task τi ∈ DHP(τk) regardless of the critical instant,
yielding the following lemma, which was explicitly/implicitly

139

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

proved/used in many schedulability tests [10], [15], [16] (so
we omit the proof).

Lemma 4 (from [10], [15], [16]): Suppose a set of tasks τ
is scheduled under RPS-FP-EE within a partition tree T Rr,
where the task-to-partition assignment from τ to T Rr is valid.
Then, τ is schedulable, if there exists Rk ≤ Dk that satisfies
Eq. (3) for every τk ∈ τ . Note that we calculate Rk from
the highest-priority task τ1 to the lowest-priority task τn,
sequentially.

Rk = Ck+
∑

τi∈DHP(τk)

ICIi (Rk), (3)

where ICIi (ℓ) =

⌈
ℓ+Ri − Ci

Ti

⌉
· Ci

C. Development of Tighter Schedulability Analysis

Although Lemma 4 is correct, we can easily find that the
lemma is pessimistic. For example, if we focus on the task
set in Example 4, we know that judging the schedulability
of τ3 in the presence of τ1 and τ2 is exactly the same
as uniprocessor scheduling. Therefore, it is correct to apply
Lemma 3 for the schedulability of τ3. Then, by adjusting the
(Ti, Ci, Di) parameters of τ1, τ2 and/or τ3 without changing
other parameters, we can easily find the case where τ3 is
deemed schedulable by Lemma 3 (implying τ3 is actually
schedulable) but not deemed schedulable by Lemma 4.

To develop a tighter schedulability analysis, we need to
systematically identify situations where we can apply the
interference term used in Lemma 3 (i.e., INO-CIi (ℓ)) instead
of that used in Lemma 4 (i.e., ICIi (ℓ)). To this end, we find
a set of higher-priority tasks which allow applying the former
for the schedulability of τk (denoted by DHPNO-CI(τk)), which
are defined and exemplified as follows.

Definition 6: Let τ ′ denote the set of tasks τj ∈ DHP(τk)∪
{τk} that satisfies (i) IHP(τj)=∅ and (ii) DHP(τj)⊆DHP(τk).
Then, DHPNO-CI(τk) is defined using τ ′ as follows:

DHPNO-CI(τk) =
⋃

τj∈τ ′

DHP(τj) ∪ {τj} \ {τk}. (4)

Example 5: Consider the schedulability of five tasks as-
signed to T R1 in Fig. 1: τ1 to {ρ15}, τ2 to {ρ13, ρ14, ρ15}, τ3 to
{ρ14, ρ15}, τ4 to {ρ13}, τ5 to {ρ13, ρ14, ρ15}, and τ6 to {ρ14, ρ15}. Our
target is the schedulability of τ6, i.e, τ6 is τk in Definition 6.
DHP(τ6) = {τ1, τ2, τ3, τ5}, which belong to at least one of
ρ14 and ρ15. Then, among DHP(τ6) ∪ {τ6}, only τ1, τ2 and τ3
satisfy both (i) and (ii) in Definition 6, because τ5 and τ6
violate (ii) and (i), respectively. Therefore, DHPNO-CI(τ6) =⋃

τj∈{τ1,τ2,τ3} DHP(τj) ∪ {τj} \ {τ6} = {τ1, τ2, τ3}.

Note that one may wonder the definition of DHPNO-CI(τk)
in Eq. (4) is too complex and can be replaced by τ ′ \ {τk}.
Although such a simplified definition is safe in terms of timing
guarantees to be developed in Lemma 6 and Theorem 1, it is
only a subset of the original definition in Eq. (4), yielding
lower schedulability performance.

For the schedulability of τk, we claim that it is possible to
apply the interference term used in Lemma 3 (i.e., INO-CIi (ℓ))
to all tasks in DHPNO-CI(τk), to be explained step by step.

Lemma 5: Suppose a set of tasks τ is scheduled under
RPS-FP-EE within a partition tree T Rr, where the task-to-
partition assignment from τ to T Rr is valid. The execution
of every task τi ∈ DHPNO-CI(τk ∈ τ) is not affected by that
of any task that does not belong to DHPNO-CI(τk).

Proof: Negating the lemma, suppose that τi ∈
DHPNO-CI(τk) is affected by τg /∈ DHPNO-CI(τk). This means
that τg belongs to either DHP(τi) or IHP(τi), which also
implies there exists a DHP sequence from τg to τi. For τi, there
exists τj that satisfies Definition 6 such that τi ∈ DHP(τj)
or τj = τi according to Eq. (4). In case of τi ∈ DHP(τj),
τg ∈ DHP(τj) contradicts Eq. (4), yielding τg /∈ DHP(τj).
Since τi ∈ DHP(τj) holds and there exists a DHP sequence
from τg to τi, a sequence from τg to τj exists yielding
τg ∈ IHP(τj) (because of τg /∈ DHP(τj)), which contradicts
the condition of τj in Definition 6. The case of τj = τi can
be proved similarly.

Lemma 6: Suppose a set of tasks τ is scheduled under
RPS-FP-EE within a partition tree T Rr, where the task-to-
partition assignment from τ to T Rr is valid. Then, Eq. (5) is
an upper bound of the duration in which tasks in DHPNO-CI(τk)
are executed on at least one of τk’ leaf partitions (i.e., L(τk))
in any interval of length ℓ.∑

τi∈DHPNO-CI(τk)

INO-CIi (ℓ) (5)

Proof: We construct a task set corresponding to
DHPNO-CI(τk), denoted by DHPNO-CI(τk)′ as follows. The
(T ′

i , C ′
i, D′

i) parameters of τ ′i ∈ DHPNO-CI(τk)′ are the
same as the (Ti, Ci, Di) parameters of the correspond-
ing τi ∈ DHPNO-CI(τk). On the other hand L(τ ′i) is
set to

⋃
τj∈DHPNO-CI(τk) L(τj) ∪ L(τk) and m′

i is set to
|
⋃

τj∈DHPNO-CI(τk) L(τj) ∪ L(τk)|. Since RPS-FP-EE is pre-
emptive and work-conserving, the following holds for a pair
of a given interval of length ℓ and a given job release
pattern: the duration in which jobs of tasks in DHPNO-CI(τk)
are executed on at least one of the partitions in L(τk) is
upper-bounded by the duration for DHPNO-CI(τk)′. Since every
τ ′i ∈ DHPNO-CI(τk)′ uses the same partition set, the calculation
of the duration in which jobs of tasks in DHPNO-CI(τk)′ are
executed on at least one of the partitions in L(τk) is equivalent
to the uniprocessor scheduling case. Along with Lemma 5, the
duration is upper-bounded by Eq. (5) for a pair of any interval
of length ℓ and any job release pattern. Therefore, the lemma
holds.

Using Lemmas 5 and 6, we can develop a tighter schedu-
lability analysis by applying the interference term used in
Lemma 3 (i.e., INO-CIi (ℓ)) to tasks in DHPNO-CI(τk).

Theorem 1: Suppose a set of tasks τ is scheduled under
RPS-FP-EE within a partition tree T Rr, where the task-to-
partition assignment from τ to T Rr is valid. Then, τ is

140

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

schedulable, if there exists Rk ≤ Dk that satisfies Eq. (6)
for every τk ∈ τ . Note that we calculate Rk from τ1 to τn,
sequentially.

Rk = Ck +
∑

DHP(τk)

I∗i→k(Rk), where (6)

I∗i→k(ℓ) =

 INO-CIi (ℓ) =
⌈

ℓ
Ti

⌉
· Ci, if τi ∈ DHPNO-CI(τk),

ICIi (ℓ) =
⌈

ℓ+Ri−Ci
Ti

⌉
· Ci, otherwise.

(7)

Proof: By Lemma 5, the execution of every task τi ∈
DHPNO-CI(τk) is not affected by any other tasks, and by
Lemma 6, the duration in which jobs of tasks in DHPNO-CI(τk)
in an interval of length ℓ prevent τk from executing is at most
Eq. (5). Also, by [10], [15], [16], the duration in which jobs
of each single task τi are executed in an interval of length ℓ

is upper-bounded by ICIi (ℓ) =
⌈
ℓ+Ri−Ci

Ti

⌉
· Ci.

Therefore, if a job of τk released at t cannot finish its
execution until t + Rk, where Rk satisfies Eq. (6), at least
one of Lemmas 5 and 6 contradicts.

Time-Complexity. To test Theorem 1, we need to know
DHP(τk), IHP(τk) and DHPNO-CI(τk) for every task. To find
DHP(τk), we need to count the number of tasks occupying
at least one of its partitions L(τk). Considering the smallest
number of processors for each partition is one, the time-
complexity of finding DHP(τk) is O(n ·mk). To find IHP(τk),
we put a queue initialized with DHP(τk). For each task τi to
be dequeued, if τj ∈ DHP(τi) is not in the queue and not
in IHP(τk), then enqueue τj . Also, if τi /∈ DHP(τk), add τi
to IHP(τk). Since dequeueing occurs at most n times, and
for each dequeued task τi, we look at DHP(τi), the time-
complexity to find IHP(τk) is O(n2). To find DHPNO-CI(τk), i)
for each τi ∈ DHP(τk), ii) check whether DHP(τi) ⊆ DHP(τk)
and IHP(τi) = ∅. If it is true, add every task τj ∈ DHP(τi)
to DHPNO-CI(τk). By i) and ii), the time-complexity of finding
DHPNO-CI(τk) is O(n2).

Since we need to find DHP(τk),IHP(τk) and DHPNO-CI(τk)
for every task, the time-complexity finding them for every task
is O(n2 ·max(n,maxτk∈τ mk)).

Once we have DHP(τk), IHP(τk) and DHPNO-CI(τk) for
every task, the time-complexity for finding Rk that sat-
isfies Eq. (6) is the same as the traditional uniprocessor
RTA (equivalent to Lemma 3) using fixed-point iteration
techniques, which is O(n2 · maxτk∈τ Dk). Therefore, the
total time complexity for testing Theorem 1 is O(n2 ·
max(n,maxτk∈τ mk,maxτk∈τ Dk)), which is affordable as
Theorem 1 is performed offline.

V. PARTITIONING & TASK ASSIGNMENT FOR RPS-FP-EE

In this section, we first briefly review the Strictly Partitioned
Scheduling (SPS) approach proposed in [11]. Building upon
the foundation laid in the previous section, we then develop a
Recursive Partitioned Scheduling (RPS) framework applicable
to a combination of the prioritization of FP and the scheduling
mode of exclusive execution (i.e., FP-EE).

A. Existing Partitioning & Task Assignment for SPS

The core idea of SPS lies in two key decisions:
• (K1) Determining the size of each partition, and
• (K2) Assigning tasks to these partitions.

Prior work on SPS [11] proposes the First-Fit Decreasing
Volume (FFDV) heuristic, which leverages the parallelism
requirement of each task mi and is inspired by algorithms for
the 2-D strip packing problem [17]. Note that each partition
is scheduled using a combination of a scheduling mode (e.g.,
global, stationary, or exclusive execution) and a prioritization
policy (e.g., EDF or FP). The FFDV heuristic first sorts tasks
in non-increasing order of their parallelism (volume) mi. The
sorted tasks are then assigned sequentially to a series of
partitions ρs = {ρs1, ρs2, ...ρsv}. Each task τi is placed in the
lowest-indexed existing partition that remains schedulable after
the task is added. If no such partition exists, a new partition
of size mi is created and τi is assigned to it, provided that
sufficient processors are available. The heuristic succeeds if all
remaining tasks are successfully assigned; otherwise, it fails.

B. Developing Partitioning & Task Assigning for RPS-FP-EE

RPS extends the key decisions of SPS (i.e., K1 and K2) by
introducing two additional key challenges, which are signifi-
cantly more complex and critical:

• (K3) Determining both the number and size of sub-
partitions at each recursive level, and

• (K4) Determining the assignment of tasks to each indi-
vidual sub-partition.

We propose a framework that addresses K3 and K4 for
RPS-FP-EE, in which (i) Algorithm 1 generates a set of
disjoint partition trees (with their root partitions) based on
the FFDV heuristic, addressing K1 and K2 corresponding to
SPS and (ii) Algorithm 2 constructs each partition tree by
recursively subdividing its leaf partitions, addressing K3 and
K4 specialized for RPS-FP-EE. An important design principle
is to initially assign each task to a single leaf partition, with the
understanding that it may later span two sub-partitions as the
leaf partition is recursively subdivided. When a leaf partition
ρv is subdivided, a task τi assigned to ρv is reallocated
to at least one of its child partitions {ρv1, ρv2}, while also
determining mi(ρv1) and mi(ρv2), i.e., how many processors
τi will be used in each sub-partition.

In Algorithm 1, we first sort the task set τ in a non-
increasing order of mi, with ties broken by given task priority,
and initialize a set of partition trees T R and the processor
budget (Lines 1–3). Each sorted task τi is considered for
assignment to the leaf partitions ρv ∈ L(T Rr ∈ T R)
examined in order from the lowest to the highest index. The
task is assigned to the first leaf partition (with mi(ρv)← mi)
that satisfies the conditions: the partition’s size is no smaller
than mi, and the partition tree T Rr remains schedulable
according to Theorem 1 (Lines 4–10). Note that when the first
task is tested, no partition tree has been constructed yet, so
the for-loop in Lines 6–10 is skipped, and execution proceeds
directly to Line 11.

141

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Partition tree generation with task assignment
1: Input : τ , m
2: T ← sort(τ) by mi ↓ (tie-breaking with given priority)
3: T R ← ∅, budget ← m
4: for τi in T do
5: schedulable ← Fail
6: for ρv in

⋃
T Rr∈T R L(T R

r) do
7: if |A(ρv)| ≥ mi and Theorem 1 holds for T Rr with

τ(ρv) = τ(ρv) ∪ {τi} then
8: τ(ρv) ← τ(ρv) ∪ {τi}, mi(ρv) ← mi, schedulable ←

Pass, and break
9: end if

10: end for
11: if schedulable == Fail and budget ≥ mi then
12: Construct a new T Rr (and its root partition ρr1) having the

next mi unassigned processors, τ(ρr1)← {τi}, mi(ρ
r
1)←

mi

13: T R ← T R ∪ {T Rr}, budget← budget−mi

14: else if schedulable == Fail then
15: for ρv in

⋃
T Rr∈T R L(T R

r) do
16: if |A(ρv)| ≥ mi and Algorithm 2 for τ(ρv) = τ(ρv) ∪

{τi}, ρv and T Rr does not return Fail then
17: Connect the sub-partitions ρv1 and ρv2 generated by

Algorithm 2 to ρv , reassigning the tasks from ρv to
ρv1 and ρv2, schedulable ← Pass and break

18: end if
19: end for
20: if schedulable == Fail, then Return unschedulable
21: end if
22: end for
23: Return schedulable

If the task cannot be assigned to any existing leaf partition,
we check whether a sufficient processor budget is available. If
so, a new partition tree T Rr of size mi is created, starting with
a single root partition, and τi is assigned to the root partition
with mi(ρ

r
1) ← mi. The processor budget is then reduced

by mi accordingly (Lines 11–13). Otherwise, we examine,
starting from the lowest-indexed leaf partition, whether the
task can be assigned through sub-partitioning (to be explained
in Algorithm 2). If successful, the selected leaf partition is sub-
partitioned by Algorithm 2, and the resulting sub-partitions
are connected to the original leaf partition, replacing the
tasks previously assigned to it (Lines 14–19). If τi cannot
be assigned even after attempting sub-partitioning of all leaf
partitions, Algorithm 1 returns unschedulable (Line 20). Con-
versely, if all tasks are successfully assigned, the algorithm
returns schedulable (Line 23).

Algorithm 2 assigns a new task by dividing a leaf partition
ρv into two sub-partitions. The tasks originally assigned to
the leaf partition are then redistributed to one or both of the
resulting sub-partitions, while ensuring the schedulability of
the overall partition tree. The procedure consists of five steps:

• (Step 1: Identify shared tasks) Among the tasks assigned
to a given leaf partition, identify the shared tasks—those
that must appear in both resulting sub-partitions.

• (Step 2: Determine the size of sub-partitions) Among
the non-shared tasks, select the one with the largest
parallelism mi(ρv) as the size of one of the sub-partitions.

Algorithm 2 sub-partition generation with task reassignment

1: Input : τ(ρv), ρv , T Rr

2: T ← sort(τ(ρv)) by mi(ρv) ↓ (tie-breaking with given priority)
3: ρv1, ρv2 ← ∅, Tshared ← ∅, mmin ← minτi∈T mi(ρv)
4: for τi in T do
5: if mmin +mi(ρv) > |A(ρv)|, then Tshared ← Tshared ∪{τi}
6: else k ← i
7: end for
8: if T == Tshared then Return Fail
9: A(ρv1)← the first mk(ρv) elements of A(ρv), τ(ρv1)← ∅

10: A(ρv2)← A(ρv) \ A(ρv1), τ(ρv2)← ∅
11: for τi in Tshared do
12: τ(ρv1)← τ(ρv1) ∪ {τi}, τ(ρv2)← τ(ρv2) ∪ {τi}
13: mi(ρv1)← |A(ρv1)|, mi(ρv2)← mi(ρv)−mi(ρv1)
14: end for
15: for τi in T \ Tshared do
16: schedulable ← Fail
17: for ρw in {ρv1, ρv2} do
18: if |A(ρw)| ≥ mi(ρv) and Theorem 1 holds for T Rr con-

necting {ρv1, ρv2} to ρv and setting τ(ρw) to τ(ρw)∪{τi}
then

19: schedulable ← Pass, τ(ρw)← τ(ρw) ∪ {τi}, break
20: end if
21: end for
22: if schedulable==Fail, then Return Fail
23: end for
24: Return the new sub-partitions ρv1 and ρv2

• (Step 3: Assign shared tasks) Insert all shared tasks into
both sub-partitions. Note that we do not need to check
the schedulability because the shared tasks are already
deemed schedulable before sub-partitioning.

• (Step 4: Assign non-shared tasks) Attempt to assign
the remaining non-shared tasks to one of the two sub-
partitions using a first-fit strategy. Each assignment is
accepted only if the resulting partition tree remains
schedulable.

• (Step 5: Check completion) If all non-shared tasks are
successfully assigned under the schedulability constraint,
the sub-partitioning is considered valid.

Algorithm 2 takes as input a leaf partition ρv , its assigned
tasks τ(ρv), and the partition tree T Rr containing ρv (Line 1),
from Algorithm 1, where the addition of a new task renders the
partition tree unschedulable without sub-partitioning. Initially,
the tasks in τ(ρv) are sorted in non-increasing order of mi(ρv),
with ties broken by given task priority. Two sub-partitions, ρ1v
and ρ2v , are created and initialized to ∅. A set of shared tasks,
Tshared, is also initialized, and mmin is set to the smallest
mi(ρv) among all tasks in τ(ρv) (Lines 2–3). Each task τi
is then examined to determine whether it is a shared task
by checking if mi(ρv) + mmin exceeds the total number of
processors assigned to ρv; if so, τi is added to Tshared (Step 1,
Lines 4–7). Note that in Line 8, if all tasks are shared tasks,
the algorithm returns Fail (as this case is already checked
and failed in Lines 6–10 of Algorithm 1). The size of the first
sub-partition ρv1 is determined by the processor requirement
of the first non-shared task (i.e., the non-shared task with the
largest mi(ρv)). The size of the second sub-partition ρv2 is

142

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

then set to the remaining processors in ρv after subtracting
the size of the first sub-partition (Step 2, Lines 9–10).

Every shared task τi is assigned to both sub-partitions,
where τi first utilizes all available processors in the first
sub-partition (i.e., mi(ρv1) ← |A(ρv1)|), and any remaining
processor requirement is fulfilled by the second sub-partition
(i.e., mi(ρv2) ← mi(ρv) − mi(ρv1)) (Step 3, Lines 11–14).
Each non-shared task is then considered for assignment—
first to ρ1v , then to ρ2v—and is assigned only if the resulting
partition tree remains schedulable after the assignment (Step 4,
Lines 15–21). If any non-shared task cannot be assigned
to either sub-partition without violating schedulability, the
algorithm returns Fail. Otherwise, if all non-shared tasks
are successfully assigned, the algorithm finalizes the two sub-
partitions along with their respective task assignments (Step 5,
Lines 22 and 24).

Example 6: Consider a scenario where five tasks τ1 to
τ5, with m1=2, m2=5, m3=2, m4=3, and m5=1, construct
T R1 in Fig. 1 (recall tasks with smaller indices have higher
priorities); we also assume that there are only five processors
P1 to P5 in the system. Sorted by mi, the tasks are tested in the
following order: τ2, τ4, τ1, τ3 and then τ5. First, τ2 is assigned
ρ11, creating T R1. Then, suppose that τ4 is assigned to ρ11 as
it satisfies Theorem 1, but τ1 does not. As a result, by Lines
15–19 of Algorithm 1, Algorithm 2 is triggered for ρ11, where
τ2 becomes a shared task (Lines 4–7), and two sub-partitions
are created (ρ12 of size m4 = 3, and ρ13 of size 5−3 = 2) with
τ2 being assigned to both sub-partitions (Lines 9–14). Then,
in Lines 15–23 of Algorithm 2, τ4 is assigned to ρ12 and τ1 is
assigned to ρ13. Afterwards, suppose that τ3 is assigned to ρ12,
but τ5 is not, according to Lines 6–10 of Algorithm 1. Similar
to ρ11 in the previous step, Algorithm 2 is triggered for ρ12,
which is then split into ρ14 of size m3 = 2 and ρ15, with the
two shared tasks, τ2 and τ4, assigned to both sub-partitions.
The non-shared tasks τ3 and τ5 are assigned to ρ14 and ρ15,
respectively. As a result, L(τ1) = {ρ13}, L(τ2) = {ρ13, ρ14, ρ15},
L(τ3) = {ρ14}, L(τ4) = {ρ14, ρ15}, and L(τ5) = {ρ15}.

Theorem 2: Suppose that Algorithm 1 associated with
Algorithm 2 returns schedulable for a gang task set τ with a
given task priority order on m processors. Then, τ is actually
schedulable by RPS-FP-EE on m processors.

Proof: Suppose that a deadline miss occurs even though
Algorithm 1 returns schedulable. The only scenarios in which
Algorithm 1 adds a task to a leaf partition or reallocates a
task for sub-partitioning are as follows: (Case 1) Lines 7–8,
(Case 2) Lines 12–13, and (Case 3) Lines 16–18 that calls
Algorithm 2.

If the deadline miss is caused by Case 1, then Theorem 1
is invalid, which leads to a contradiction. If the deadline
miss is caused by Case 2, then it implies that a single task
cannot be executed on a root partition, which also leads to a
contradiction.

If a deadline miss arises from Case 3, we need to examine
Algorithm 2 as follows. First, if the deadline miss occurs for a

shared task, then either Line 8 of Algorithm 2 does not return
Fail (that contradicts Line 8 as it is), or the deadline miss
must result from Case 1 or 2 of Algorithm 1 (because shared
tasks are already deemed schedulable by Case 1 or 2), which
have already been shown to lead to contradiction. Second,
if the deadline miss occurs for a non-shared task, then the
validity check of Theorem 1 at Line 18 of Algorithm 2 must
have failed, which again contradicts.

By contradiction, the theorem holds.

Time-complexity. In Algorithm 2, Line 15 has complexity
dependent on O(n), and Line 18 that checks Theorem 1 is
tested up to twice (for ρv1 and ρv2), resulting in a time-
complexity of O(n3 ·max(n,maxτk∈τ mk,maxτk∈τ Dk)). Al-
gorithm 1, for every task, checks whether Theorem 1 is satis-
fied for each leaf partition (Lines 6–10), construct a partition
tree (Lines 12–13), and call Algorithm 2 for each leaf partition
(Lines 15–19); therefore, the time-complexity is dominated by
the last one (calling Algorithm 2). Considering the number of
leaf partitions is upper-bounded by m, the time-complexity of
Algorithm 1 is O(n4 ·m·max(n,maxτk∈τ mk,maxτk∈τ Dk)),
which is affordable as Algorithm 1 is performed offline.

VI. ADVANCED PARTITIONING & TASK ASSIGNMENT

The proposed partitioning & task assignment framework
presented in the previous section is a general heuristic appli-
cable to a given task priority order. This section enhances the
schedulability performance of the framework by reassigning
task priorities to adjust the inter-task relationship analyzed in
Section IV, based on understanding of an impact of task pri-
orities on schedulability under Algorithm 1 with Algorithm 2.

A. Impact of Task Priorities on Schedulability

According to Theorem 1, the response time of a task τk
is affected by two of the primary factors: (i) the number
of its directly interfering higher-priority tasks, denoted as
DHP(τk), and (ii) whether the interference from these tasks
τi is computed as ICIi (ℓ) or INO-CIi (ℓ) in Eq. (7) (representing
interference with/without carry-in, respectively). Regarding (i),
for a given leaf partition ρv , the sum of all the number of DHPs
of each task within the partition is fixed as

∑|τ(ρv)|−1
x=0 x, which

does not change with the task priority ordering.
However, regarding (ii), a shared task τi with a higher

priority than a task τk ∈ τ(ρv) can affect how interference
is calculated. Specifically, suppose that τi is the only shared
task assigned to both ρv and ρw, where there is even higher
priority task in ρw. Then, due to τi, all intermediate-priority
tasks τj ∈ ρv with i < j < k impose interference of
ICIj (ℓ) to τk (rather than INO-CIj (ℓ)). Conversely, if the shared
task is assigned the highest priority among all tasks in any
partition, they will be considered INO-CIj (ℓ), as explained in
the following examples.

Example 7: Consider τ3 with L(τ3) = {ρ14} under anal-
ysis in Example 6. In this situation, τ2 ∈ DHP(τ3) with
L(τ2) = {ρ13, ρ14, ρ15} contributes interference to τ3 as ICI2 (ℓ)
(not INO-CI2 (ℓ)), due to the presence of a higher priority

143

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Advanced partitioning & task assignment
• Modification to Algorithm 1

Added to Line 5: SP (τi)←∞
Added to Line 12: Depth(ρr1)← 0

• Modification to Algorithm 2
Added to Line 3: Depth(ρv1), Depth(ρv2)← Depth(ρv) + 1
Added to Line 12: If SP (τi) ̸=∞ then SP (τi)← Depth(ρv)

task τ1 /∈ DHP(τ3) with L(τ1) = {ρ13} that is shared with
τ2 ∈ DHP(τ3). For the same reason, τ4 with L(τ4) = {ρ14, ρ15}
and τ5 with L(τ5) = {ρ15} (both of which do not occupy ρ13)
are interfered by their individual higher-priority DHP tasks
by ICIi (ℓ) (not INO-CIi (ℓ)). This issue can be mitigated by
promoting the priority of shared tasks relative to non-shared
tasks, as demonstrated in the following example.

Example 8: Consider the same situation as Example 7. If we
promote the priority of shared tasks τ2 and τ4 over non-shared
tasks, such that the priority order is τ2 ≻ τ4 ≻ τ1 ≻ τ3 ≻ τ5,
then the following holds. Since the priority of τ2 becomes
higher than that of τ1, the presence of τ1 no longer causes
the shared task τ2 to impose interference of ICI2 (ℓ) to lower-
priority tasks. The same holds for the priority promotion of
τ4 over τ3. As a result, although the set of DHP tasks for
each task changes (which affects schedulability), this priority
promotion effectively alleviates the interference amount from
ICIi (ℓ) into INO-CIi (ℓ).

Note that the priority promotion of shared tasks is a heuristic
to reduce interference, not guaranteeing optimal schedula-
bility. However, as demonstrated in Section VII, applying
priority promotion—described in the following subsection—
effectively improves empirical schedulability performance.

B. Leveraging Priority Reassignment for Shared Tasks

According to the analysis in the previous subsection, we
propose a simple, yet effective priority reassignment for shared
tasks in Algorithm 2. The basic idea is to assign higher priority
to shared tasks than to non-shared tasks during the partitioning
process in Algorithm 2. Importantly, the relative priority order
among non-shared tasks is preserved as originally given.

The key challenge, however, lies in determining the relative
priorities among shared tasks—particularly between tasks that
become shared due to partitioning at different levels. To
address this, we assign higher priority to tasks that are shared
in higher-level (i.e., shallower-depth, closer to the root parti-
tion) leaf partitions. Among tasks that become shared within
the same partition, their original priority order is preserved.
To reflect this, Algorithm 3 details the required changes to
Algorithms 1 and 2.

We define a shared priority order (with SP (τi) returning
the shared priority order of τi) that takes precedence over the
regular task priority. That is, task priorities are compared first
by their shared priority order, and ties are broken using the
original priority order. In support of this mechanism, Line 5
of Algorithm 1 initially sets the shared priority value of each

task τi to SP (τi)←∞. When a root partition tree is created
(Line 12), its depth denoted by Depth(ρr1) is initialized to
0. In Algorithm 2, Line 3 sets the depth of the two newly
created sub-partitions ρv1 and ρv2 to the depth of ρv plus
one. In Line 12, the shared priority of each task τi is then set
to the depth of ρv , unless τi already has a finite shared priority
value, in which case it inherits its previous value.

Theorem 3: Consider Algorithms 1 and 2 are modified by
Algorithm 3. Suppose that the modified version of Algorithm 1
associated with the modified version of Algorithm 2 returns
schedulable for a gang task set τ with a given task priority
order on m processors. Then, τ is actually schedulable by
RPS-FP-EE (with task priority order change) on m processors.

Proof: The proof follows the same structure as that of
Theorem 2, and thus it suffices to check whether the schedu-
lability of each shared and non-shared task is guaranteed with
the priority promotion of a shared task. From the perspective
of a shared task, since the shared task’s priority has been
promoted relative to when the schedulability was checked at
Lines 7–8 of Algorithm 1, the modification cannot violate
schedulability. As to a non-shared task, any potential impact
from the change in the shared task’s priority is captured by
the schedulability check in Line 18 of Algorithm 2; therefore,
no additional verification is required.

VII. EVALUATION

In this section, we evaluate the schedulability performance
of the proposed RPS framework.

Task set generation. We generate gang task sets based on
[6], [8], [11], [18]. The settings explore all combinations of
five parameters: (S1) the number of processors m is chosen
from {8, 16}; (S2) the number of tasks n is selected from
{m, 3

2m, 2m, 5
2m}; (S3) the task parallelism mi is uniformly

selected from either [1,m/2] (denoted by L) or [1,m] (denoted
by H) ; (S4) the deadline model of each task is either implicit-
deadlines Di = Ti (denoted by I) or constrained-deadlines
Di ≤ Ti (denoted by C); and (S5) the gang task set utilization
UGang =

∑
(mi · Ci/Ti) is varied from 0.1m to 1.0m in

increments of 0.1m.
For each task set, given m, n and UGang in S1, S2 and

S5, respectively, mi and Ui=mi·Ci/Ti of each task are
determined by S3 and the UUnifast algorithm [19], such that
all tasks in each task set satisfy Ui ≤ mi. Then, the period
Ti for each task is uniformly selected from [100, 1000]ms,
and the worst-case execution time Ci is set to Ui · Ti/mi.
The relative deadline Di is determined by Ti for I, and
uniformly distributed in [max(0.8Ti, Ci), Ti] for C. For each
combination of parameters S1–S5, we generate 1000 task sets,
resulting in a total of 2× 4× 2× 2× 10× 1,000 = 320,000
task sets. Each unique configuration of parameters S1–S4
is represented as a tuple, where “*” means all values in
the corresponding parameter; for instance, the configuration
(16, 40, H, *) corresponds to task sets with m=16, n=40,
mi ∈ [1,m], and both implicit- and constrained-deadline task
models, respectively.

144

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

(a) (16,16,H,C) task sets (b) (16,16,H,I) task sets (c) (16,16,L,I) task sets (d) (16,40,H,I) task sets

Fig. 3: The ratio of task sets deemed schedulable by each approach, under different task set configurations

Comparison approaches. We compare the ratio of task sets
deemed schedulable by the following approaches.

• SS-FP: stationary scheduling with FP, tested by its
schedulability analysis [10],

• SPS-FP: strictly partitioned scheduling with exclusive
execution and FP [11], tested by the exact FP uniproces-
sor schedulability analysis [13],

• SPS-EDF: strictly partitioned scheduling with exclusive
execution and EDF [11], tested by the exact EDF unipro-
cessor schedulability analysis [14], [20],

• RPS-FP1 and RPS-FP2: RPS-FP-EE with Algorithms 1
and 2, tested by Theorems 2 and 3, respectively.

For comparison, the Deadline Monotonic (DM) prioritization
policy is given to all FP approaches.3 We do not compare ex-
isting global scheduling approaches in [6] and existing strictly
partitioned scheduling approaches in which each partition is
scheduled by global scheduling [11], as it has been reported
in [11] that they exhibit poor performance compared to the
above comparison approaches.

TABLE II: The ratio of task sets deemed schedulable by each
approach, normalized by SPS-FP (%)

.
(m, n) SS-FP SPS-FP SPS-EDF RPS-FP1 RPS-FP2
(8, 8) 108.98% 100.00% 113.64% 112.20% 119.30%
(8, 12) 108.28% 100.00% 116.45% 114.45% 126.92%
(8, 16) 105.59% 100.00% 119.02% 114.62% 131.53%
(8, 20) 103.45% 100.00% 120.73% 114.04% 134.63%
(16, 16) 103.64% 100.00% 118.73% 114.11% 132.90%
(16, 24) 99.67% 100.00% 121.54% 114.56% 140.97%
(16, 32) 95.92% 100.00% 122.90% 112.64% 143.93%
(16, 40) 93.63% 100.00% 124.29% 111.63% 146.17%

Overall schedulability performance. Table II presents the
overall ratio of schedulable task sets for the combinations
of S1 and S2, using SPS-FP as a baseline. The results are
aggregated over both deadline models (C and I in S4) and both
task parallelism ranges (L and H in S3). While SPS-EDF con-
sistently outperforms SPS-FP due to the superiority of EDF
over FP on uniprocessor scheduling, RPS-FP2 shows better
schedulability performance than SPS-EDF by 4.98%–17.60%
even though RPS-FP2 employs the prioritization policy of FP.

3Recall that RPS-FP2 employs modified task priorities from DM, accord-
ing to Algorithm 3.

RPS-FP2 also outperforms SS-FP by 9.47%–56.11%, which
is known as a state-of-the-art non-SPS scheduling.

Table II reveals a similar trend for both m=8 and m=16:
as the number of tasks n increases, the schedulability ratio of
SS-FP declines, whereas those of SPS-EDF and RPS-FP2
improve. Also, we observe that the schedulability performance
trend for different deadline models does not vary much; for
example, compare Fig. 3(a) for (16, 16, H, C) and Fig. 3(b)
for (16, 16, H, I), both of which share the same configuration
except the deadline model. Therefore, the remainder of this
section presents evaluation results by focusing m = 16 and
the implicit-deadline deadline model.

Impact of task parallelism heterogeneity. Fig. 3(b) and
(c) present the schedulable task sets for the (16, 16, *, I)
configuration, differing only in the task parallelism ranges
H and L. As shown in Fig. 3(b), the proposed approach
RPS-FP2 outperforms all other approaches by a significant
margin of at least 43.1% under (16, 16, H, I) where task
parallelism spans the entire processor range from 1 to m.
In this configuration, SPS-EDF ranks third in schedulability
performance, performing even worse than SS-FP. On the
other hand, as shown in Fig. 3(c) under limited task parallelism
(up to m/2), SPS-EDF performs best but slightly outperforms
RPS-FP2 by 6.1%, while RPS-FP2 provides the best per-
formance among all FP-based methods.

This can be attributed to the fundamental design of RPS.
While SPS suffers from performance degradation when han-
dling tasks with large parallelism due to its restricted flexibility
in forming multiple strict partitions, RPS effectively addresses
this limitation through recursive partitioning, thereby success-
fully resolving the task parallelism heterogeneity problem of
gang scheduling, which is the goal of this paper.

Impact of the number of tasks. Fig. 3(b) and (d) show the
ratio of schedulable task sets under (16, *, H, I) that differ
only in the number of tasks (16 vs. 40). While the overall
trend remains consistent across both cases, the performance
gap between RPS-FP2 and other approaches becomes more
pronounced as the number of tasks increases. In both configu-
rations, the second-best performing approach is SS-FP, with
RPS-FP2 outperforming it by 43.1% under (16, 16, H, I) and
by 88.6% under (16, 40, H, I). The results demonstrate that our
proposed approach introduces less pessimism for more tasks

145

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

in utilizing remaining processors and applying schedulability
analysis, compared to existing approaches.

Effectiveness of shared-task priority promotion. While
RPS-FP2 consistently outperforms RPS-FP1 across all task
set configurations, we observe the performance gap is partic-
ularly influenced by the task parallelism range. For example,
when m=16, RPS-FP2 outperforms RPS-FP1 by 2.8% and
3.9% under the (16, *, L, C) and (16, *, L, I), respectively.
The improvement becomes significantly more pronounced in
high-parallelism range H, where RPS-FP2 achieves 65.9%
and 71.7% improvements over RPS-FP1 under the (16, *,
H, C) and (16, *, H, I), respectively. This can be attributed
to a key characteristic of RPS-FP-EE, where each task can
be interfered not only from directly competing tasks but also
from indirectly interfering ones (as described in Section IV).
The observed results indicate that the prposed RPS-FP2 ef-
fectively alleviates indirect interference by employing a simple
yet powerful mechanism: elevating the priority of shared tasks
(with larger mi).

VIII. RELATED WORK

Gang scheduling, which is a special case of parallel schedul-
ing, is designed and considered for efficient operations for
high-performance computers subject to high-throughput [21]–
[23]. With the development of parallel processing units (e.g.,
[1], [2]) and various parallel programming models (e.g, [24],
[25]), recent studies consider real-time gang scheduling. In this
context, two main scheduling paradigms have been considered:
global scheduling (GS), where the threads of a gang task
can be executed on any available processors at run-time,
and stationary scheduling (SS), where each task is statically
assigned to a fixed subset of processors. Regarding preemptive
gang scheduling for GS, there have been several studies on
the timing guarantee of FP-GS [3]–[6] and EDF-GS [6]–[9],
while some studies try to find optimal scheduling algorithm
for GS [5], [26]. Regarding non-preemptive gang schedul-
ing for GS, there exist a few studies that try to guarantee
schedulability [18], [27]–[30]. When it comes to SS, a study
in [10] is the only existing approach to SS-FP that offers
timing guarantees by its schedulability test and processor-task
mapping algorithm.

Recently, strictly partitioned scheduling (SPS) has been
proposed and evaluated in [11], [31]. Despite its simplicity,
SPS has shown superior empirical performance in terms of
schedulability compared to GS and SS. Building on this,
we generalize the SPS framework to allow each partition to
recursively accommodate different gang tasks with varying
degrees of parallelism mi efficiently, thereby addressing the
core challenge in gang scheduling—the heterogeneity of task
parallelism requirements.

IX. CONCLUSION

This paper presented RPS, a hierarchical scheduling frame-
work that generalizes SPS for real-time gang tasks. To fully
realize the potential of RPS, we developed a tight and inter-
pretable schedulability analysis of RPS-FP-EE and designed

effective partitioning and task assignment strategies by lever-
aging the proposed analysis. Our results demonstrated the
effectiveness of RPS in improving schedulability. As future
work, we plan to explore the application of RPS under other
scheduling modes and prioritization policies.

ACKNOWLEDGEMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (RS-2024-00438248, RS-2024-00460389).

REFERENCES

[1] D. Kirk, “NVIDIA Cuda software and GPU parallel computing archi-
tecture,” in Proceedings of the international symposium on memory
management, 2007, pp. 103–104.

[2] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE micro, vol. 31, no. 5,
pp. 7–17, 2011.

[3] F. A. Silva, E. P. Lopes, E. P. Aude, F. Mendes, J. Silveira, H. Serdeira,
M. Martins, and W. Cirne, “Response time analysis of gang scheduling
for real time systems,” in Proceedings of the SPECTS 2002-2002
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems. Citeseer, 2002.

[4] J. Goossens and V. Berten, “Gang FTP scheduling of periodic
and parallel rigid real-time tasks,” CoRR, abs/1006.2617 URL: http:
//arxiv.org/abs/1006.2617, 2010.

[5] V. Berten, P. Courbin, and J. Goossens, “Gang fixed priority scheduling
of periodic moldable realtime tasks,” in In 5th Junior Researcher
Workshop on Real-Time Computing, 2011, pp. 9–12.

[6] S. Lee, S. Lee, and J. Lee, “Response time analysis for real-time
global gang scheduling,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), 2022, pp. 92–104.

[7] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel task sys-
tems,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS),
December 2009, pp. 459–468.

[8] Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), December 2017, pp. 128–138.

[9] ——, “Analysis techniques for supporting hard real-time sporadic gang
task systems,” Real-Time Systems, vol. 55, no. 4.

[10] N. Ueter, M. Gunzel, G. von der Bruggen, and J.-J. Chen, “Hard
real-time stationary GANG-scheduling,” in Proceedings of Euromicro
Conference on Real-Time Systems (ECRTS), 2021, pp. 10:1–10:19.

[11] B. Sun, T. Kloda, and M. Caccamo, “Strict partitioning for sporadic
rigid gang tasks,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2024, pp. 252–264.

[12] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A hybrid
real-time scheduling approach for large-scale multicore platforms,” in
19th Euromicro Conference on Real-Time Systems (ECRTS’07). IEEE,
2007, pp. 247–258.

[13] N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Hard real-time
scheduling: the deadline-monotonic approach,” in Proceedings of the
IEEE Workshop on Real-Time Operating Systems and Software, May
1991, pp. 133–137.

[14] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[15] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in Proceedings of IEEE
Real-Time Systems Symposium (RTSS), 2007, pp. 149–158.

[16] J.-J. Chen, G. Nelissen, and W.-H. Huang, “A unifying response time
analysis framework for dynamic self-suspending tasks,” in Proceedings
of Euromicro Conference on Real-Time Systems (ECRTS), 2016, pp. 61–
71.

[17] E. G. Coffman, Jr, M. R. Garey, D. S. Johnson, and R. E. Tarjan, “Perfor-
mance bounds for level-oriented two-dimensional packing algorithms,”
SIAM Journal on Computing, vol. 9, no. 4, pp. 808–826, 1980.

[18] S. Lee, N. Guan, and J. Lee, “Design and timing guarantee for non-
preemptive gang scheduling,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), 2022, pp. 132–144.

146

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

[19] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, May 2005.

[20] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in Proceedings of IEEE Real-Time
Systems Symposium (RTSS), 1990.

[21] D. G. Feitelson and L. Rudolph, “Gang scheduling performance benefits
for fine-grain synchronization,” Journal of Parallel and distributed
Computing, vol. 16, no. 4, pp. 306–318, 1992.

[22] J. K. Ousterhout, “Scheduling techniques for concurrent systems,” in
Proceedings of International Conference on Distributed Computing
Systems, 1982, pp. 22–30.

[23] M. A. Jette, “Performance characteristics of gang scheduling in multipro-
grammed environments,” in Proceedings of the ACM/IEEE Conference
on Supercomputing, 1997.

[24] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[25] P. Pacheco, Parallel programming with MPI. Morgan Kaufmann, 1997.
[26] S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in

real-time scheduling theory,” Information processing letters, vol. 106,
no. 5, pp. 180–187, 2008.

[27] G. Nelissen, J. Marcè i Igual, and M. Nasri, “Response-time analysis
for non-preemptive periodic moldable gang tasks,” in Proceedings of
Euromicro Conference on Real-Time Systems (ECRTS), 2022, pp. 12:1–
12:22.

[28] Z. Dong and C. Liu, “A utilization-based test for non-preemptive gang
tasks on multiprocessors,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2022, pp. 105–117.

[29] B. Sun, T. Kloda, J. Chen, C. Lu, and M. Caccamo, “Schedulability
analysis of non-preemptive sporadic gang tasks on hardware accelera-
tors,” in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2023, pp. 147–160.

[30] ——, “Response time analysis and optimal priority assignment for
global non-preemptive fixed-priority rigid gang scheduling,” IEEE
Transactions on Parallel and Distributed Systems, vol. 36, no. 3, pp.
455–470, 2025.

[31] B. Sun, T. Kloda, C.-G. Wu, and M. Caccamo, “Partitioned scheduling
and parallelism assignment for real-time dnn inference tasks on multi-
tpu,” in Proceedings of the ACM/IEEE Design Automation Conference
(DAC), 2024, pp. 333:1–6.

147

Authorized licensed use limited to: Yonsei Univ. Downloaded on January 06,2026 at 02:27:34 UTC from IEEE Xplore. Restrictions apply.

