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Abstract—The development of parallel computing architec-
tures has created a growing need for scheduling real-time gang
tasks, in which a specified number of threads per task must
be executed simultaneously under timing constraints. However,
existing approaches struggle to handle a fundamental challenge—
the heterogeneity in the number of threads across gang tasks.
To address the challenge, this paper proposes a novel schedul-
ing framework, called Recursive Partitioned Scheduling (RPS),
in which each partition can be recursively divided into sub-
partitions whose assigned processor sets are disjoint and collec-
tively equal to that of the parent, forming a tree-like hierarchical
structure. RPS provides a flexible interface that allows each task
to be assigned to an appropriate level in the hierarchy based on
the number of threads it requires. To fully exploit RPS, we adopt
fixed-priority scheduling and address two key issues. First, we
develop a tight schedulability analysis, which not only utilizes the
well-known exact schedulability analysis results for uniprocessor
scheduling but also leverages the relationship between intra-
and inter-partition interference. Second, based on the insights
from the analysis, we design an effective partition generation
and task assignment algorithm specialized for RPS, and further
enhance it through task priority reassignment. Simulation results
demonstrate that our approach significantly outperforms existing
approaches in terms of schedulability.

I. INTRODUCTION

Due to advances in parallel computing architectures [1],
[2], gang scheduling has been widely studied in the real-
time systems area, in which the pre-defined number of threads
of a gang task should be executed on different processors
at the same time. A fundamental challenge in guaranteeing
the timeliness of gang tasks arises from the heterogeneity of
tasks in terms of the number of threads to be executed in
parallel, as the problem of scheduling gang tasks with the
same number of threads reduces to scheduling non-parallel
tasks (each occupying only one processor) on multiprocessors.
To address the challenge, there are two primary directions
that leverage different processor-task mapping modes: (i) the
global scheduling in which the threads of a gang task can
be executed on any set of processors at run-time [3]-[9],
and (ii) the stationary scheduling in which a task should be
executed on a designated set of processors whose number is
the same as that of threads of the task [10]. Recently, a third
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approach, known as Strictly Partitioned Scheduling (SPS), has
gained attention due to its empirically superior schedulability
performance [11], where gang tasks and processors are stati-
cally divided into disjoint sets, allowing each partition to be
scheduled independently.'

Although SPS is conceptually simple, it has opened a new
avenue for gang scheduling. From the perspective of decom-
position, it provides a framework that allows each partition to
be scheduled using global or stationary scheduling or, alter-
natively, to execute tasks exclusively (therefore reducing the
scheduling problem to uniprocessor scheduling and utilizing
its exact schedulability analysis). However, SPS has inherent
limitations in addressing the fundamental challenge of gang
scheduling—the heterogeneity of tasks with respect to the
number of threads, as follows.

L1. If there exists even a single task whose number of
threads is equal to (or close to) the total number of
processors, partitioning becomes infeasible. In such cases,
the scheduling problem reverts to global or stationary
scheduling, negating the advantages of SPS.

L2. Even when partitioning is possible, significant variation in
the number of threads among tasks within a partition can
lead to poor schedulability performance. That is, if tasks
are scheduled exclusively within the partition, under-
utilization is inevitable; alternatively, applying global
or stationary scheduling within a partition inherits the
pessimism in calculating interference.

To address the limitations of SPS, we propose a novel
scheduling framework, called Recursive Partitioned Schedul-
ing (RPS), for real-time gang tasks. While SPS allows only
a single level of disjoint partitions, RPS adopts a tree-like
hierarchical structure with partitions organized across multiple
levels. Specifically, each partition in RPS can be recursively
subdivided into disjoint partitions at the next level. A task is
then assigned to one of the partitions located at any level in
this hierarchy, based on the number of threads it requires. RPS
is a generalization of SPS, as it becomes equivalent to SPS

!For non-parallel tasks (each occupying only one processor), the concepts
of strictly partitioned and stationary scheduling in gang scheduling can be in-
terpreted as clustered scheduling [12] and partitioned scheduling, respectively.
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when task assignments are restricted to only the first-depth
partitions.

Although RPS provides a flexible interface that addresses
the limitations L1 and L2, realizing its full potential requires
careful management of direct/indirect interference among
tasks assigned to same/different partitions. Therefore, the
effectiveness of RPS heavily depends on two key components:
(i) the proper selection of a prioritization policy in conjunction
with a processor-task mapping mode, and (ii) the development
of partition generation and task assignment algorithms that col-
lectively minimize such interference. For (i), we adopt fixed-
priority exclusive-execution scheduling for RPS (RPS-FP-EE).
Since interference only occurs from higher-priority tasks to
lower-priority ones under FP, combining FP with exclusive
execution, where only one task can be executed in each parti-
tion, has the potential to minimize or even eliminate cascading
interference across partitions. For (ii), to be specialized for
RPS-FP-EE, we identify the following questions for design
requirements.

R1. In RPS-FP-EE, what is the relationship between intra-
partition and inter-partition interference, and how can we
develop a schedulability analysis that accurately models
and effectively leverages this relationship?

Based on the insights from R1, how can we design
an effective partition generation and task assignment
algorithm under a given fixed-priority ordering?
Extending R2, how can we further enhance the partition-
ing and assignment process by actively incorporating pri-
ority reassignment to efficiently exploit the schedulability
analysis framework developed in R1?

To address R1, we classify higher-priority tasks that influ-
ence the execution of a target task into two categories: DHP
and IHP (Directly/Indirectly interfering Higher-Priority tasks).
This classification enables a structured understanding of the
relationship between intra-partition and inter-partition interfer-
ence. Building upon the notions of DHP and IHP, we propose
a method for identifying the largest subset of higher-priority
tasks to which tight interference analysis can be applied,
leveraging the exact interference bounds from uniprocessor
FP scheduling. To this end, we formally derive the necessary
conditions that such a subset must satisfy with respect to
DHP and IHP relationships. By applying tight interference
analysis to the identified subset, we develop a schedulability
test for RPS-FP-EE that accurately and interpretably captures
cascading interference across partitions.

For R2, we design a partitioning and task assignment
strategy that realizes the full potential of RPS under FP-EE.
Specifically, we propose a hierarchical algorithm that incre-
mentally constructs partition trees (with their root partitions).
Each task is first assigned to an existing schedulable partition
whenever possible. If no such partition exists, the algorithm
either creates a new partition tree or subdivides an existing
partition to accommodate the task. This process preserves
schedulability at every step by applying the developed tight
schedulability analysis. The algorithm also accounts for both
task parallelism (the number of threads it requires) and intra-

R2.

R3.
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/inter-partition interference, guiding partitioning and task-to-
partition mapping decisions.

To address R3, we investigate how task priorities influence
the schedulability under the answers of R1 and R2. We identify
specific tasks whose priorities significantly affect interference
bounds, and mitigate analysis pessimism by promoting their
priorities in the process of performing the proposed parti-
tioning & task assignment framework. This enhancement is
integrated through systematic modifications, ensuring both
compatibility with the original framework and correctness of
schedulability.

We evaluate the schedulability performance of our partition-
ing & task assignment algorithm (i.e., the answer of R2) and its
improved version with priority reassignment (i.e., the answer
of R3), both of which leverage the proposed schedulability
analysis for RPS-FP-EE (i.e., the answer of R1). Our approach
demonstrates superior schedulability performance compared
to state-of-the-art methods, particularly when task parallelism
heterogeneity is significant.

This paper makes the following key contributions.

« Development of a novel concept of recursive partitioned
scheduling (RPS) and strategies for its effective use.

e Design of a schedulability analysis tailored for
RPS-FP-EE,

« Proposal of an effective partitioning and task assignment
method based on the developed analysis,

« Enhancement of RPS-FP-EE performance through prior-
ity reassignment, and

o Demonstration of the effectiveness of the proposed
RPS-FP-EE via extensive simulation studies.

II. SYSTEM MODEL

We consider a system of m identical processors II
{P;}™_,, executing sporadic rigid gang tasks 7 = {7},
as widely used (e.g., [6], [8]-[11]). Each task 7; invokes a
series of jobs with the minimum inter-arrival time (or period)
T;, the worst case execution time C;, the relative deadline
D;, and the parallelism m;. Once a job of 7; is released
at ¢, it should be performed for at most C; time units no
later than its absolute deadline at ¢ 4+ D;; also, whenever the
job of 7; is performed, it requires m; threads to be executed
simultaneously on different m; processors. We target a set of
implicit-deadline (i.e., D; = T;) or constrained-deadline (i.e.,
D; <T;) tasks. We call a job active at t, if it has remaining
execution at t. The response time of 7; (denoted by R;) is an
upper bound of the time interval length between the release
and finishing time of all jobs invoked by 7;; therefore, a job of
7; released at ¢ finishes its execution by ¢ + R;. Although the
concept of RPS can be applied to non-preemptive scheduling,
this paper focuses on the preemptive setting, meaning that
every job is preemptable without any preemption cost. Let
| X| denote the number of elements in X.

A task set 7 is said to be schedulable by a scheduling
algorithm on m processors, if there is no single job deadline
miss for every legal job sequence generated by 7 when it is
scheduled by the scheduling algorithm on m processors.
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III. RECURSIVE PARTITIONED SCHEDULING (RPS)

In this section, we present our design of RPS and provide
a roadmap for achieving its full potential.

A. Designing RPS

RPS consists of two key components: (i) constructing par-
titions and (ii) mapping tasks to partitions. In the partition
construction aspect, while strict partitioned scheduling (SPS)
divides the entire processor set II into disjoint partitions, re-
cursive partitioned scheduling (RPS) introduces a hierarchical
structure by recursively subdividing each partition into sub-
partitions, enabling further division at each depth level. In
RPS, the outermost disjoint partitions—referred to as partition
trees and corresponding to the disjoint partitions in SPS—are
formally defined as follows.

Definition 1: Under RPS, the entire processor set II is
disjointly assigned to a set of partition trees TR = {TR"}. A
set of processors assigned to a partition tree 7R" is denoted
by A(TR"). By definition, A(TR") N A(TR?) = ( holds
for r # p, and |J,,. A(TR") = II holds.

Then, each partition tree can be divided in a recursive
manner, formally as follows.

Definition 2: Under RPS, a partition tree TR" with an
assigned processor set A(7R") has a root node (i.e., root
partition) whose assigned processors are identical to those
of the partition tree itself. Each parent partition in 7R" can
be recursively subdivided into a set of child partitions whose
assigned processor sets are disjoint and collectively equal to
that of the parent.

Each partition in 7R" is denoted by pl, where v is the
partition index. For simplicity, we use p, when the partition
tree index r is not required for clarity.

From the task mapping perspective, we design RPS so that
each task is mapped to leaf partition(s) as follows.

Definition 3 (Task-partition mapping): Under RPS, each
task 7; is assigned to exactly one partition tree. Within the
assigned partition tree, a task is mapped to at least one
(possibly multiple) leaf nodes (i.e., leaf partitions); let m;(p,)
denote the number of processors allocated to 7; within the
given leaf partition p, (See Example 2 in this section and
Example 4 in the next section). Also, let L(7TR") denote the
set of leaf partitions in 7°R". The total number of processors
assigned to a set of leaf partitions to which each task 7; is
mapped must be no less than m;; otherwise, 7; is not eligible
for execution.

Under RPS, most (if not all) task scheduling strategies
can be applied independently within each partition tree; this
includes a combination of (i) scheduling modes such as global,
stationary, or exclusive-execution scheduling and (ii) prioriti-
zation schemes such as FP and EDF. An important requirement
is that a prioritization order must be defined among jobs that
share the same partition.
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Fig. 1: Illustration of hierarchical structure and task-partition
mapping in RPS

We assume each task 7; utilizes at least one processor from
each of its assigned partitions whenever it is executed. If this
condition is not met, it implies that at least one of the assigned
partitions is redundant and should not have been assigned to
7;. For notations, let £(7;) denote a set of leaf partitions that 7;
belongs to. Also, let A(p,), | A(py)], and 7(p,) denote a set of
processors assigned to p,,, the number of processors assigned
to p,, and a set of tasks that belong to p,, respectively.

Example 1: Fig. 1 illustrates an example of an RPS struc-
ture, consisting of two partition trees TR' and TR?, with
A(TRY={P1, Py, P3, Py, Ps} and A(TR?*)={Ps, P;, Px}.
Within 7R, there are five partitions p} to pl, where p} is the
root partition, and p3, pl, and p! are leaf partitions. Likewise,
TR? has three partitions: the root partition p?, and the leaf
partitions p3 and p2. Note that if a partition tree consists of
only a root partition, the root partition also serves as a leaf
partition.

Example 2: Here is an example of a task-to-partition
mapping. There are a set of tasks 7 with m;=4, 15 with
ma=2, 13 with m3=3, and 74 with m4=2, mapped to TR?
in Fig. 1 as follows. £(m1)={p3, p3} with m;(p3)=2, and
mi(p3)=2, L(r2)={p3} with ma(p3)=2, L(r3)={p3,p3}
with m3(p2)=2, and ms(p3)=1, and L(14)={p3} with
my(p3)=2.

We design RPS so that tasks are assigned only to leaf nodes.
However, if all child nodes of an intermediate node p, are
among the nodes to which a task 7; is assigned, then 7; can
be regarded as being assigned to the intermediate node p,.
This allows the task assignment to be equivalently expressed
as if tasks could be assigned to intermediate nodes. For
example, if RPS were designed to allow tasks to be assigned
to intermediate nodes, 71 and 73 in Fig. 1 could be regarded
as being assigned to {p?} instead of {p3, p3}. Note that when
a task is assigned to {p}, pi}, it is not equivalent to being
assigned to {pi}.

Lemma 1: RPS has the following properties.

o RPS is a generalization of SPS.

« The execution of a task within a given partition tree does
not affect the execution of tasks in other partition trees,
ensuring inter-tree isolation.
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Proof: The SPS is equivalent to RPS when every partition
tree contains only a root partition, without any further subdi-
vision. Inter-tree isolation is ensured by the non-overlapping
processor sets between partition trees (by Definition 1) and
the unique assignment of each task to a single tree (by
Definition 3). |

B. Leveraging RPS

RPS provides a flexible interface that allows each task to
be assigned to an appropriate level in the hierarchy based on
the number of threads it requires. This results in the following
pros and cons.

o Pros: By recursively dividing a parent partition into child
partitions, RPS ensures that there is no direct interference
between tasks assigned only to different child partitions,
offering significant potential for improving schedulability.

e Cons: Since each task can be assigned to multiple
partitions, indirect interference can occur. For example,
consider 7y, belongs to p} and p5, and 7; belongs to pj, and
ph in TR". Then, 7,,(# 71) belonging to p} may affect
the execution of 7,(# 7;) belonging to p5, even though
7, and 74 do not share any partition; this is because of
the existence of 75 and 7; that shares the same partition
Ph-

To leverage the advantage while mitigating the disadvantage
for RPS, we adopt FP as a prioritization policy and EE
(exclusive execution) as a scheduling mode, i.e., RPS-FP-EE.

e Prioritization: Under FP, interference occurs only in one
direction—from higher-priority to lower-priority tasks.
This property can be effectively exploited in the par-
titioning and task assignment to minimize cascading
direct/indirect interference.

e Scheduling mode: Under EE, only one task can be
executed in each partition. Due to its simplicity, EE
not only reduces run-time scheduling overhead, but also
provides a foundation for simplifying and tightening the
schedulability analysis to be developed.

In the following sections, we aim to maximize the schedula-

bility performance of RPS-FP-EE through the following steps.

e We develop a schedulability analysis that tightly and
interpretably captures cascading interference across par-
titions under a given fixed-priority assignment (Sec-
tion IV).

o Building on this analysis, we propose a partitioning
and task-to-partition mapping strategy that considers cas-
cading interference under the fixed-priority order (Sec-
tion V).

« We further extend our approach by incorporating priority
reassignment across partitions to more effectively miti-
gate cascading interference (Section VI).

IV. SCHEDULABILITY ANALYSIS FOR RPS-FP-EE

Under RPS, a task 7; cannot affect the execution of an-
other task 7y, if they belong to different partition trees (by
Lemma 1). Therefore, targeting a task set 7 within a partition
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tree executed on m processors, this section analyzes the
properties of RPS-FP-EE and then develops a schedulability
analysis for RPS-FP-EE. Throughout the remainder of this
paper, we assume a fixed-priority assignment where tasks with
smaller indices have higher priority without loss of generality;
i.e., 71 has the highest priority and 7,, the lowest.

A. Properties of RPS-FP-EE

Under RPS-FP-EE, while it is straightforward that every
task whose priority is lower than 7, cannot affect the execution
of 7, due to the prioritization of FP, there are two types of
higher-priority tasks whose execution affects the execution of
Tk either directly or indirectly.

Definition 4: DHP(7y,) and IHP(7y) are defined as follows.

o DHP(74) (Directly interfering Higher-Priority task set): a
set of higher-priority tasks of 75 that cannot be executed
with 75 at the same time, which is formally defined as a
set of 7, € 7 such that (i) 7; has a higher priority than
Tk (i.e., 1<k) and (ii) 7; is assigned to at least one of the
same leaf partitions as 7 is assigned, i.e., DHP(7%)
Upveﬁ(‘rk){Ti € T(pv)‘i<k}'

e IHP(7y): (Indirectly interfering Higher-Priority task set):
a set of higher-priority tasks not in DHP(7y), each of
which belongs to DHP of DHP of 7, DHP of DHP of
DHP of 7y, or so on, which is formally defined as a set of
7; € T\DHP(7}) such that there exists a DHP sequence of
tasks 7, Ti,, ..., Ty, such that (i) 7;, =T, (ii) 7;, =%, and
(iii) 7, € DHP(7;,,,) holds for every p = 1,2,...q — 1.

Example 3: Consider a set of tasks {71, 72,73}, assigned
to TR' in Fig. 1 as follows: £(m1) = {p}, pi}, L(m) =
{p3,pi,p3} and L(r3) = {pi}. Then, DEP(73)={r} and
DHP (72)={1 } hold. On the other hand, IHP(73)={ } holds,
since (i) 7 has a higher priority than 73, (ii) 7; does not
belong to DHP(73), and (iii) the DHP task sequence exists
(i.e., 72 € DHP(73) & 71 € DHP(73)). Therefore, although 7
does not directly interfere 73, it can affect the execution of 73
by directly interfering 7o that directly interferes 3.

Lemma 2: Under RPS-FP-EE, the following properties hold.

o DHP(7}) N IHP(73) = 0.

« The execution of 71 is indepedent of any task that does
not belong to DHP (1) U IHP (7).

Proof: The properties hold immediately by the definition
of DHP(7) and IHP(7y). u

Using the above definitions and properties, we establish the
following design principles for the schedulability analysis:

o Leveraging the relationship between DHP and IHP to
construct an interference-aware schedulability analysis,

« Exploiting the tightness of the existing exact uniprocessor
FP schedulability analysis as much as possible, and

« Formalizing these relationships to guide partitioning and
task-to-partition assignment in a manner that improves
overall schedulability.
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Fig. 2: An example of schedules under RPS-FP-EE

In the next subsections, we first investigate which ex-
isting results can be applicable to RPS-FP-EE. Based on
the investigation, we derive a tight schedulability analysis
for RPS-FP-EE by utilizing the exact schedulability analysis
results for uniprocessor scheduling while leveraging the rela-
tionship between DHP and IHP. Before proceeding, we define
the validity of a task-to-partition assignment, as follows.

Definition 5: A task-to-partition assignment from 7 to 7R"
is said to be valid, if the following two conditions hold for
every 7; € 7: (i) the total number of processors assigned
to 7; across all its partitions must be equal to m; (i.e.,
> poEL(r) m;(py) = m;), and (ii) the number of processors
assigned to 7; in each partition must not exceed the size of that
partition (i.e., m;(p,) < |A(py)| holds for every p, € L(7;)).

B. Existing Results: To Be and Not To Be Utilized

Consider a set of tasks that share the same leaf partition(s).
Then, RPS-FP-EE is equivalent to FP uniprocessor scheduling
designed for non-parallel tasks, which makes it possible to
utilize its exact schedulability analysis [13] as follows.

Lemma 3 (from [13]): Suppose a set of tasks 7 is scheduled
under RPS-FP-EE within a partition tree 7R", where the task-
to-partition assignment from 7 to 7R" is valid. Consider that
all tasks share the same set of leaf partitions £(7). Then, 7
is schedulable, if there exists Ry < Dy that satisfies Eq. (1)

for every 75, € 7.

T3 EDHP(T},)

Ry = Cy + I (Ry), M
where I)°°C*(¢) (interference of 7; in an interval of length ¢
without any carry-in? job) can be calculated by

IZNO—CI(K) — ’VTﬁ—‘ - C;.

Since every task is executed on the same partition(s),
DHP(7%) is a set of all tasks whose priority is higher than
Tk, 1.e., DHP(1x) = {m; € 7]i < k}.

(@)

2A job is said to be carry-in for an interval, if it is released before the
interval but has remaining execution at the beginning of the interval.
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TABLE I: An example of a task set assigned to a partition
tree

Task Ti Cl' Di m; ﬁ(‘l‘l) m; (pv)
[ 3 1 3 4 {p, 5} ma(p3) =2,mi(p3) =2
™ |5 2 5 2 {p3} ma(p3) = 2
o9 2 9 3 {p5,p3} m3(p3)=2,m3(p3) =1
T4 |18 8 18 2 {p32} my(p3) =2

The lemma holds by the well-known response time analysis
for FP uniprocessor scheduling in [13], where Ry in Eq. (1)
is obtained by a fixed-point iteration: starting with Ry = C}
on the RHS (Right-Hand-Side) of Eq. (1), the value of
Ry, is iteratively updated on the LHS (Left-Hand-Side) until
convergence. The second term of the RHS of Eq. (1) does not
include the contribution of any carry-in job of 7; in the target
interval of length /. This is because of a well-known result for
FP uniprocessor scheduling: a critical instant of 75 (in which
the response time of 74 is maximized) happens when every
task whose priority is higher than 7, is released at the same
time of the job of interest of 7, [14]. However, as shown in
the following example, the result does not generally hold for
RPS-FP-EE.

Example 4: Consider the following four tasks {1, 72, 73, 74 }
from Example 2, allocated in a partition tree TR? with four
processors {Ps, Pr, Ps, Py}, shown in Fig. 1 and Table I,
scheduled by RPS-FP-EE.

Since 74 is executed on p2, 7> executed on p3 does not
belong to DHP(74). If we calculate Ry based on Lemma 3, we
find Ry = 18 such that Cy+ [ |-C1+ [ |- Cs = 8+6-1+
2-2 =18 holds in Eq. (1). Note that it is easily checked that
the highest-priority tasks 7; and 7 are schedulable. Fig. 2(a)
illustrates the schedule of [0, 18) where the first job of every
task is released at ¢ = 0 and the following jobs are released
periodically, which seems to support the above result where
74 is schedulable (i.e., Ry = 18 < D4 = 18).

However, 74 is actually not schedulable (i.e., Ry = 18 is
wrong), as shown in Fig. 2(b) in which the jobs of  and 73
are periodically released from ¢ = —2 while the jobs of 7; and
74 are periodically released from ¢ = 0. In [0, 18), the job of
74 executes only for 6 units instead of Cy = 8 units, resulting
in a job deadline miss.

Why is Lemma 3 wrong in the example? This is due to the
existence of 7o that belongs to IHP(74); although 75 cannot
directly prevent 7, from executing by competing with at least
one partition commonly assigned to both 75 and 74, 75 is
capable of changing the execution pattern of 73 that directly
interferes with 74. Therefore, we cannot guarantee that the
critical instant for 74 occurs when a job of 73 is released at the
same time instant, which was demonstrated in the job deadline
miss of 74 in Fig. 2(b).

One simple approach to address the above problem is to
apply the largest possible interference (i.e., I7*(¢) in Eq. (3))
from every task 7; € DHP(7},) regardless of the critical instant,
yielding the following lemma, which was explicitly/implicitly
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proved/used in many schedulability tests [10], [15], [16] (so
we omit the proof).

Lemma 4 (from [10], [15], [16]): Suppose a set of tasks 7
is scheduled under RPS-FP-EE within a partition tree TR",
where the task-to-partition assignment from 7 to 7R" is valid.
Then, 7 is schedulable, if there exists R, < D, that satisfies
Eq. (3) for every 7, € 7. Note that we calculate R; from
the highest-priority task 7; to the lowest-priority task 7,,
sequentially.

Ry = Ci+ z

7; EDHP (T1)

I (Ry), 3)
{+ R —C;

c1 _
where I; (¢) = [ T

|-e

C. Development of Tighter Schedulability Analysis

Although Lemma 4 is correct, we can easily find that the
lemma is pessimistic. For example, if we focus on the task
set in Example 4, we know that judging the schedulability
of 73 in the presence of 7 and 7o is exactly the same
as uniprocessor scheduling. Therefore, it is correct to apply
Lemma 3 for the schedulability of 75. Then, by adjusting the
(T3, Cy, D;) parameters of 71, 7o and/or 73 without changing
other parameters, we can easily find the case where 73 is
deemed schedulable by Lemma 3 (implying 73 is actually
schedulable) but not deemed schedulable by Lemma 4.

To develop a tighter schedulability analysis, we need to
systematically identify situations where we can apply the
interference term used in Lemma 3 (i.e., I97¢*({)) instead
of that used in Lemma 4 (i.e., I{*(¢)). To this end, we find
a set of higher-priority tasks which allow applying the former
for the schedulability of 7 (denoted by DHPY I (7)), which
are defined and exemplified as follows.

Definition 6: Let 7 denote the set of tasks 7; € DHP(7) U
{7} that satisfies (i) IHP(7;)=0 and (ii) DHP (7, ) CDHP (7).
Then, DHPY"“I(7;) is defined using 7’ as follows:

DHPY (1) = U DHP(7;) U {7} \ {7 }-

et
T;ET

“

Example 5: Consider the schedulability of five tasks as-
signed to 7R" in Fig. 1: 71 to {pi}, 72 to {p}, pi, L}, 73 to
{ph, i}, mato {p3}, 75 to {p}, pi, p3}, and 76 to {p}, p3}. Our
target is the schedulability of 7g, i.e, 7¢ is 7% in Definition 6.
DHP(76) = {71, 72, 73,75}, which belong to at least one of
pi and pl. Then, among DHP(76) U {76}, only 71, 72 and 73
satisfy both (i) and (ii) in Definition 6, because 75 and T4
violate (i) and (i), respectively. Therefore, DHPY° I (75) =
UTje{n,Tz,Tg} DHP(7;) U{7;} \ {76} = {71, 72, 3}.

Note that one may wonder the definition of DHPYO ™I (7y,)
in Eq. (4) is too complex and can be replaced by 7'\ {7}.
Although such a simplified definition is safe in terms of timing
guarantees to be developed in Lemma 6 and Theorem 1, it is
only a subset of the original definition in Eq. (4), yielding
lower schedulability performance.
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For the schedulability of 74, we claim that it is possible to
apply the interference term used in Lemma 3 (i.e., IJ°°1(¢))
to all tasks in DHPYO™“I(73.), to be explained step by step.

Lemma 5: Suppose a set of tasks 7 is scheduled under
RPS-FP-EE within a partition tree 7R", where the task-to-
partition assignment from 7 to 7R is valid. The execution
of every task 7; € DHPY™I (7, € 7) is not affected by that
of any task that does not belong to DHPYO~CI (7).

Proof: Negating the lemma, suppose that 7; €
DHPY"CI(7},) is affected by 7, ¢ DHPY“I (7). This means
that 7, belongs to either DHP(7;) or IHP(7;), which also
implies there exists a DHP sequence from 7, to 7;. For 7, there
exists 7; that satisfies Definition 6 such that 7; € DHP(7;)
or 7; = 7; according to Eq. (4). In case of 7, € DHP(7;),
Ty € DHP(7;) contradicts Eq. (4), yielding 7, ¢ DHP(7;).
Since 7; € DHP(7;) holds and there exists a DHP sequence
from 7, to 7;, a sequence from 7, to 7; exists yielding
T, € IHP(7;) (because of T, ¢ DHP(7;)), which contradicts
the condition of 7; in Definition 6. The case of 7; = 7; can
be proved similarly. |

Lemma 6: Suppose a set of tasks 7 is scheduled under
RPS-FP-EE within a partition tree 7R", where the task-to-
partition assignment from 7 to 7R" is valid. Then, Eq. (5) is
an upper bound of the duration in which tasks in DHPNO™CI (1)
are executed on at least one of 75’ leaf partitions (i.e., £(7%))
in any interval of length /.

IiNO*CI (Z) (5)

7, EDHPNO-CI (73.)

Proof: We construct a task set corresponding to
DHPYCI(7;), denoted by DHPNOCI(r;)" as follows. The
(T}, C}, D) parameters of 7, € DHP""“I(7;)" are the
same as the (7;, C;, D;) parameters of the correspond-
ing 7, € DHPY®I(7;). On the other hand L(7]) is
set to UTJEDHPNO,CI(T,C) L(7j) U L(7%) and m] is set to
| U, epspio-c: (rg) £(75) U L(73,)]. Since RPS-FP-EE is pre-
emptive and work-conserving, the following holds for a pair
of a given interval of length ¢ and a given job release
pattern: the duration in which jobs of tasks in DHPN° I ()
are executed on at least one of the partitions in L(73) is
upper-bounded by the duration for DHPN° I (7. )’. Since every
7/ € DHPY" I (7}’ uses the same partition set, the calculation
of the duration in which jobs of tasks in DHPY™CI(7;,)" are
executed on at least one of the partitions in £(7) is equivalent
to the uniprocessor scheduling case. Along with Lemma 5, the
duration is upper-bounded by Eq. (5) for a pair of any interval
of length ¢ and any job release pattern. Therefore, the lemma
holds. |

Using Lemmas 5 and 6, we can develop a tighter schedu-
lability analysis by applying the interference term used in
Lemma 3 (i.e., IJ'°"°1(¢)) to tasks in DHP O™ ().

Theorem 1: Suppose a set of tasks 7 is scheduled under
RPS-FP-EE within a partition tree 7TR", where the task-to-
partition assignment from 7 to 7R" is valid. Then, 7 is
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schedulable, if there exists R; < Dj that satisfies Eq. (6)
for every 7, € 7. Note that we calculate Ry from 7 to 7,,
sequentially.

]:(*)k(g) = {
@)

Proof: By Lemma 5, the execution of every task 7; €
DHPYCI(7;) is not affected by any other tasks, and by
Lemma 6, the duration in which jobs of tasks in DHPNCI (7))
in an interval of length ¢ prevent 7, from executing is at most
Eq. (5). Also, by [10], [15], [16], the duration in which jobs
of each single task 7; are executed in an interval of length ¢
is upper-bounded by IF!(¢) = [%ﬁcf—‘ - C;.

Therefore, if a job of 7 released at ¢ cannot finish its
execution until ¢ + Ry, where Ry satisfies Eq. (6), at least
one of Lemmas 5 and 6 contradicts. |

Ry =Cr + Z I}, (Ry), where

DHP(T1)

r0=[4] o
I51(0) = FH—R%;C;‘ -C

i

(©)

if 7; € DHP" ™" (13,),

otherwise.

Time-Complexity. To test Theorem 1, we need to know
DHP(7k), IHP(7) and DHPNOCI(7y,) for every task. To find
DHP(7%), we need to count the number of tasks occupying
at least one of its partitions £(7x). Considering the smallest
number of processors for each partition is one, the time-
complexity of finding DHP(7y) is O(n-my). To find THP(7y),
we put a queue initialized with DHP(7y). For each task 7; to
be dequeued, if 7; € DHP(7;) is not in the queue and not
in THP(7y), then enqueue ;. Also, if 7, ¢ DHP(7y), add 7;
to IHP(7g). Since dequeueing occurs at most n times, and
for each dequeued task 7;, we look at DHP(7;), the time-
complexity to find THP(73,) is O(n?). To find DHPYOCI(7y), i)
for each 7; € DHP(7y,), ii) check whether DHP (7;) C DHP(7y)
and IHP(7;) = (0. If it is true, add every task 7; € DHP(7;)
to DHPN°"CI(7;). By i) and ii), the time-complexity of finding
DHPYOCI(7) is O(n?).

Since we need to find DHP (7 ), THP(75) and DHPNO™CT (73,)
for every task, the time-complexity finding them for every task
is O(n? - max(n, max,, e, mg)).

Once we have DHP(7y), IHP(7g) and DHPNOCI(7;) for
every task, the time-complexity for finding R that sat-
isfies Eq. (6) is the same as the traditional uniprocessor
RTA (equivalent to Lemma 3) using fixed-point iteration
techniques, which is O(n2 - maxr, e; Di). Therefore, the
total time complexity for testing Theorem 1 is O(n? -
max(n, max,, e, Mk, Max,, cr Dy)), which is affordable as
Theorem 1 is performed offline.

V. PARTITIONING & TASK ASSIGNMENT FOR RPS-FP-EE

In this section, we first briefly review the Strictly Partitioned
Scheduling (SPS) approach proposed in [11]. Building upon
the foundation laid in the previous section, we then develop a
Recursive Partitioned Scheduling (RPS) framework applicable
to a combination of the prioritization of FP and the scheduling
mode of exclusive execution (i.e., FP-EE).
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A. Existing Partitioning & Task Assignment for SPS
The core idea of SPS lies in two key decisions:

¢ (K1) Determining the size of each partition, and
o (K2) Assigning tasks to these partitions.

Prior work on SPS [11] proposes the First-Fit Decreasing
Volume (FFDV) heuristic, which leverages the parallelism
requirement of each task m; and is inspired by algorithms for
the 2-D strip packing problem [17]. Note that each partition
is scheduled using a combination of a scheduling mode (e.g.,
global, stationary, or exclusive execution) and a prioritization
policy (e.g., EDF or FP). The FFDV heuristic first sorts tasks
in non-increasing order of their parallelism (volume) m;. The
sorted tasks are then assigned sequentially to a series of
partitions p* = {p$, p3,...p5}. Each task 7; is placed in the
lowest-indexed existing partition that remains schedulable after
the task is added. If no such partition exists, a new partition
of size m; is created and 7; is assigned to it, provided that
sufficient processors are available. The heuristic succeeds if all
remaining tasks are successfully assigned; otherwise, it fails.

B. Developing Partitioning & Task Assigning for RPS-FP-EE

RPS extends the key decisions of SPS (i.e., K1 and K2) by
introducing two additional key challenges, which are signifi-
cantly more complex and critical:

e (K3) Determining both the number and size of sub-
partitions at each recursive level, and

o (K4) Determining the assignment of tasks to each indi-
vidual sub-partition.

We propose a framework that addresses K3 and K4 for
RPS-FP-EE, in which (i) Algorithm 1 generates a set of
disjoint partition trees (with their root partitions) based on
the FFDV heuristic, addressing K1 and K2 corresponding to
SPS and (ii) Algorithm 2 constructs each partition tree by
recursively subdividing its leaf partitions, addressing K3 and
K4 specialized for RPS-FP-EE. An important design principle
is to initially assign each task to a single leaf partition, with the
understanding that it may later span two sub-partitions as the
leaf partition is recursively subdivided. When a leaf partition
pv 1s subdivided, a task 7; assigned to p, is reallocated
to at least one of its child partitions {p,1,py2}, While also
determining m;(p,1) and m;(py2), i.e., how many processors
7; will be used in each sub-partition.

In Algorithm 1, we first sort the task set 7 in a non-
increasing order of m;, with ties broken by given task priority,
and initialize a set of partition trees 7R and the processor
budget (Lines 1-3). Each sorted task 7; is considered for
assignment to the leaf partitions p, € L(TR" € TR)
examined in order from the lowest to the highest index. The
task is assigned to the first leaf partition (with m;(p,) < m;)
that satisfies the conditions: the partition’s size is no smaller
than m;, and the partition tree 7R" remains schedulable
according to Theorem 1 (Lines 4—10). Note that when the first
task is tested, no partition tree has been constructed yet, so
the for-loop in Lines 6-10 is skipped, and execution proceeds
directly to Line 11.
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Algorithm 1 Partition tree generation with task assignment

Algorithm 2 sub-partition generation with task reassignment

I: Input : 7, m

2: T < sort(7) by m; | (tie-breaking with given priority)
3: TR < 0, budget < m

4: for 7; in T do

5. schedulable +— Fail

6:  for p, in U prerr L(TR™) do
7: if |A(py)| > m; and Theorem 1 holds for TR" with
7(pu) = 7(pv) U {7i} then
8: 7(pw) < T(pv) U {7}, mi(pv) < mi, schedulable <
Pass, and break
9: end if
10:  end for
11:  if schedulable == Fail and budget > m; then
12: Construct a new 7R" (and its root partition p7) having the
next m; unassigned processors, 7(p7) « {7}, mi(p])
mq
13: TR+ TRU{TR"}, budget < budget — m;
14:  else if schedulable == Fail then
15: for p, in U rrerr £(TR") do
16: if [ A(py)| > m; and Algorithm 2 for 7(p,) = 7(pv) U
{7i}, p» and TR" does not return Fail then
17: Connect the sub-partitions p,1 and p,2 generated by

Algorithm 2 to p,, reassigning the tasks from p, to
pv1 and py2, schedulable <— Pass and break
18: end if

19: end for

20: if schedulable == Fail, then Return unschedulable
21:  end if

22: end for

23: Return schedulable

If the task cannot be assigned to any existing leaf partition,
we check whether a sufficient processor budget is available. If
$0, a new partition tree 7R" of size m; is created, starting with
a single root partition, and 7; is assigned to the root partition
with m;(p}) < m,;. The processor budget is then reduced
by m; accordingly (Lines 11-13). Otherwise, we examine,
starting from the lowest-indexed leaf partition, whether the
task can be assigned through sub-partitioning (to be explained
in Algorithm 2). If successful, the selected leaf partition is sub-
partitioned by Algorithm 2, and the resulting sub-partitions
are connected to the original leaf partition, replacing the
tasks previously assigned to it (Lines 14-19). If 7; cannot
be assigned even after attempting sub-partitioning of all leaf
partitions, Algorithm 1 returns unschedulable (Line 20). Con-
versely, if all tasks are successfully assigned, the algorithm
returns schedulable (Line 23).

Algorithm 2 assigns a new task by dividing a leaf partition
py into two sub-partitions. The tasks originally assigned to
the leaf partition are then redistributed to one or both of the
resulting sub-partitions, while ensuring the schedulability of
the overall partition tree. The procedure consists of five steps:

o (Step 1: Identify shared tasks) Among the tasks assigned
to a given leaf partition, identify the shared tasks—those
that must appear in both resulting sub-partitions.

o (Step 2: Determine the size of sub-partitions) Among
the non-shared tasks, select the one with the largest
parallelism m;(p,,) as the size of one of the sub-partitions.

1: Input : 7(py), pv, TR"

2: T <« sort(7(pv)) by m;(p.) | (tie-breaking with given priority)
3t pot, po2 < 0, Tenarea ¢ 0, Mgin < ming e7 mi(py)

4: for 7; in T do

50 if mnin +mi(pw) > [A(py)|, then Tonarea < Tonarea U {7}
6 else k < i

7. end for

8: if 7 == Tinharea then Return Fail

9: A(pv1) < the first my(po) elements of A(py), 7(pv1) < 0
10: A(pu2) < A(po) \ A(po1). 7(pv2) 0

11: for 7; in Tanarea do

122 7(pu1) = T(po1) U{mi}, 7(pu2) < 7(pv2) U{Ti}

130 mi(pv1) < [A(po1)], mi(pu2) < mi(pv) — mi(pv1)

14: end for

15: for 7; in 7 \ Toharea do

16:  schedulable < Fail

17 for py in {pv1, pv2} do

18: if | A(pw)| > mi(py») and Theorem 1 holds for TR" con-
necting {pv1, pv2} to p, and setting 7(pw) to 7(pw) U{7:}
then

19: schedulable < Pass, T(pw) < T(pw) U {7}, break

20: end if

21:  end for

22: if schedulable==Fail, then Return Fail

23: end for

24: Return the new sub-partitions p,1 and py2

o (Step 3: Assign shared tasks) Insert all shared tasks into
both sub-partitions. Note that we do not need to check
the schedulability because the shared tasks are already
deemed schedulable before sub-partitioning.

o (Step 4: Assign non-shared tasks) Attempt to assign

the remaining non-shared tasks to one of the two sub-

partitions using a first-fit strategy. Each assignment is
accepted only if the resulting partition tree remains
schedulable.

(Step 5: Check completion) If all non-shared tasks are

successfully assigned under the schedulability constraint,

the sub-partitioning is considered valid.

Algorithm 2 takes as input a leaf partition p,, its assigned
tasks 7(p, ), and the partition tree 7R" containing p,, (Line 1),
from Algorithm 1, where the addition of a new task renders the
partition tree unschedulable without sub-partitioning. Initially,
the tasks in 7(p,,) are sorted in non-increasing order of m;(p,),
with ties broken by given task priority. Two sub-partitions, p}
and p%, are created and initialized to (). A set of shared tasks,
Tshared, 18 also initialized, and mm, is set to the smallest
m;(p,) among all tasks in 7(p,) (Lines 2-3). Each task 7;
is then examined to determine whether it is a shared task
by checking if m;(py) + Mmin exceeds the total number of
processors assigned to p,; if so, 7; is added to Tgnareq (Step 1,
Lines 4-7). Note that in Line 8, if all tasks are shared tasks,
the algorithm returns Fail (as this case is already checked
and failed in Lines 6-10 of Algorithm 1). The size of the first
sub-partition p,; is determined by the processor requirement
of the first non-shared task (i.e., the non-shared task with the
largest m;(py)). The size of the second sub-partition p,s is
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then set to the remaining processors in p, after subtracting
the size of the first sub-partition (Step 2, Lines 9-10).

Every shared task 7; is assigned to both sub-partitions,
where 7; first utilizes all available processors in the first
sub-partition (i.e., m;(py1) < |A(py1)|), and any remaining
processor requirement is fulfilled by the second sub-partition
(i.e., mi(pp2) < mi(py) — m;i(py1)) (Step 3, Lines 11-14).
Each non-shared task is then considered for assignment—
first to pl, then to p?—and is assigned only if the resulting
partition tree remains schedulable after the assignment (Step 4,
Lines 15-21). If any non-shared task cannot be assigned
to either sub-partition without violating schedulability, the
algorithm returns Fail. Otherwise, if all non-shared tasks
are successfully assigned, the algorithm finalizes the two sub-
partitions along with their respective task assignments (Step 5,
Lines 22 and 24).

Example 6: Consider a scenario where five tasks 73 to
75, With m1=2, ms=>5, m3z=2, m4=3, and ms=1, construct
TR' in Fig. 1 (recall tasks with smaller indices have higher
priorities); we also assume that there are only five processors
P to Ps in the system. Sorted by m;, the tasks are tested in the
following order: 7o, 74, 71, T3 and then 75. First, 79 is assigned
pl, creating TR'. Then, suppose that 7 is assigned to p} as
it satisfies Theorem 1, but 7; does not. As a result, by Lines
15-19 of Algorithm 1, Algorithm 2 is triggered for pl, where
7o becomes a shared task (Lines 4-7), and two sub-partitions
are created (p} of size my4 = 3, and p} of size 5 —3 = 2) with
T being assigned to both sub-partitions (Lines 9—14). Then,
in Lines 15-23 of Algorithm 2, 74 is assigned to p% and 7 is
assigned to pi. Afterwards, suppose that 73 is assigned to p3,
but 75 is not, according to Lines 6—10 of Algorithm 1. Similar
to pl in the previous step, Algorithm 2 is triggered for pi,
which is then split into p} of size m3 = 2 and p}, with the
two shared tasks, 7o and 74, assigned to both sub-partitions.
The non-shared tasks 73 and 75 are assigned to p} and pl,
respectively. As a result, £(11) = {pi}, L(72) = {p3, pi, pi},
L(13) = {pi}, L(1a) = {p}, p}}, and L(75) = {p3}.

Theorem 2: Suppose that Algorithm 1 associated with
Algorithm 2 returns schedulable for a gang task set 7 with a
given task priority order on m processors. Then, 7 is actually
schedulable by RPS-FP-EE on m processors.

Proof: Suppose that a deadline miss occurs even though
Algorithm 1 returns schedulable. The only scenarios in which
Algorithm 1 adds a task to a leaf partition or reallocates a
task for sub-partitioning are as follows: (Case 1) Lines 7-8,
(Case 2) Lines 12-13, and (Case 3) Lines 16-18 that calls
Algorithm 2.

If the deadline miss is caused by Case 1, then Theorem 1
is invalid, which leads to a contradiction. If the deadline
miss is caused by Case 2, then it implies that a single task
cannot be executed on a root partition, which also leads to a
contradiction.

If a deadline miss arises from Case 3, we need to examine
Algorithm 2 as follows. First, if the deadline miss occurs for a
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shared task, then either Line 8 of Algorithm 2 does not return
Fail (that contradicts Line 8 as it is), or the deadline miss
must result from Case 1 or 2 of Algorithm 1 (because shared
tasks are already deemed schedulable by Case 1 or 2), which
have already been shown to lead to contradiction. Second,
if the deadline miss occurs for a non-shared task, then the
validity check of Theorem 1 at Line 18 of Algorithm 2 must
have failed, which again contradicts.

By contradiction, the theorem holds. [ ]

Time-complexity. In Algorithm 2, Line 15 has complexity
dependent on O(n), and Line 18 that checks Theorem 1 is
tested up to twice (for p,; and p,2), resulting in a time-
complexity of O(n® -max(n, max,, ¢, mg, max,, e, Di)). Al-
gorithm 1, for every task, checks whether Theorem 1 is satis-
fied for each leaf partition (Lines 6-10), construct a partition
tree (Lines 12—13), and call Algorithm 2 for each leaf partition
(Lines 15-19); therefore, the time-complexity is dominated by
the last one (calling Algorithm 2). Considering the number of
leaf partitions is upper-bounded by m, the time-complexity of
Algorithm 1 is O(n*-m-max(n, max,, ¢, Mg, Max,, cr Di)),
which is affordable as Algorithm 1 is performed offline.

VI. ADVANCED PARTITIONING & TASK ASSIGNMENT

The proposed partitioning & task assignment framework
presented in the previous section is a general heuristic appli-
cable to a given task priority order. This section enhances the
schedulability performance of the framework by reassigning
task priorities to adjust the inter-task relationship analyzed in
Section IV, based on understanding of an impact of task pri-
orities on schedulability under Algorithm 1 with Algorithm 2.

A. Impact of Task Priorities on Schedulability

According to Theorem 1, the response time of a task 7
is affected by two of the primary factors: (i) the number
of its directly interfering higher-priority tasks, denoted as
DHP(7y), and (ii) whether the interference from these tasks
7; is computed as I7T(¢) or IT°7*(¢) in Eq. (7) (representing
interference with/without carry-in, respectively). Regarding (i),
for a given leaf partition p,,, the sum of all the number of DHPs
of each task within the partition is fixed as ZLT:(’S“)‘*I x, which
does not change with the task priority ordering.

However, regarding (ii), a shared task 7; with a higher
priority than a task 7, € 7(p,) can affect how interference
is calculated. Specifically, suppose that 7; is the only shared
task assigned to both p, and p,,, where there is even higher
priority task in p,,. Then, due to 7;, all intermediate-priority
tasks 7; € p, with i« < j < k impose interference of
I5*(¢) to 7y, (rather than I3°°°(£)). Conversely, if the shared
task is assigned the highest priority among all tasks in any
partition, they will be considered I;°“*({), as explained in
the following examples.

Example 7: Consider 73 with £(73) = {pi} under anal-
ysis in Example 6. In this situation, 75 € DHP(73) with
L(12) = {p3, p}, pi} contributes interference to 73 as IS (¢)
(not IJ°°CI(¢)), due to the presence of a higher priority
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Algorithm 3 Advanced partitioning & task assignment
e Modification to Algorithm 1
Added to Line 5: SP(7;) + o0
Added to Line 12: Depth(p]) < 0
e Modification to Algorithm 2
Added to Line 3: Depth(py1), Depth(py2) < Depth(p,) + 1
Added to Line 12: If SP(7;) # oo then SP(7;) < Depth(py)

task 7 ¢ DHP(73) with £(71) = {pi} that is shared with
T2 € DHP(73). For the same reason, 74 with £(74) = {pl, pi}
and 75 with £(75) = {pt} (both of which do not occupy p3)
are interfered by their individual higher-priority DHP tasks
by IST(¢) (not IF°CT(¢)). This issue can be mitigated by
promoting the priority of shared tasks relative to non-shared
tasks, as demonstrated in the following example.

Example 8: Consider the same situation as Example 7. If we
promote the priority of shared tasks 7o and 74 over non-shared
tasks, such that the priority order is 75 > 74 > 71 > T3 > T5,
then the following holds. Since the priority of 7o becomes
higher than that of 7;, the presence of 7 no longer causes
the shared task 7o to impose interference of IS*(¢) to lower-
priority tasks. The same holds for the priority promotion of
T4 over T3. As a result, although the set of DHP tasks for
each task changes (which affects schedulability), this priority
promotion effectively alleviates the interference amount from
IF1(0) into INO~C1(¢).

Note that the priority promotion of shared tasks is a heuristic
to reduce interference, not guaranteeing optimal schedula-
bility. However, as demonstrated in Section VII, applying
priority promotion—described in the following subsection—
effectively improves empirical schedulability performance.

B. Leveraging Priority Reassignment for Shared Tasks

According to the analysis in the previous subsection, we
propose a simple, yet effective priority reassignment for shared
tasks in Algorithm 2. The basic idea is to assign higher priority
to shared tasks than to non-shared tasks during the partitioning
process in Algorithm 2. Importantly, the relative priority order
among non-shared tasks is preserved as originally given.

The key challenge, however, lies in determining the relative
priorities among shared tasks—particularly between tasks that
become shared due to partitioning at different levels. To
address this, we assign higher priority to tasks that are shared
in higher-level (i.e., shallower-depth, closer to the root parti-
tion) leaf partitions. Among tasks that become shared within
the same partition, their original priority order is preserved.
To reflect this, Algorithm 3 details the required changes to
Algorithms 1 and 2.

We define a shared priority order (with SP(r;) returning
the shared priority order of 7;) that takes precedence over the
regular task priority. That is, task priorities are compared first
by their shared priority order, and ties are broken using the
original priority order. In support of this mechanism, Line 5
of Algorithm 1 initially sets the shared priority value of each
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task 7; to SP(7;) + co. When a root partition tree is created
(Line 12), its depth denoted by Depth(p]) is initialized to
0. In Algorithm 2, Line 3 sets the depth of the two newly
created sub-partitions p,1 and p,2 to the depth of p, plus
one. In Line 12, the shared priority of each task 7; is then set
to the depth of p,, unless 7; already has a finite shared priority
value, in which case it inherits its previous value.

Theorem 3: Consider Algorithms 1 and 2 are modified by
Algorithm 3. Suppose that the modified version of Algorithm 1
associated with the modified version of Algorithm 2 returns
schedulable for a gang task set 7 with a given task priority
order on m processors. Then, 7 is actually schedulable by
RPS-FP-EE (with task priority order change) on m processors.

Proof: The proof follows the same structure as that of
Theorem 2, and thus it suffices to check whether the schedu-
lability of each shared and non-shared task is guaranteed with
the priority promotion of a shared task. From the perspective
of a shared task, since the shared task’s priority has been
promoted relative to when the schedulability was checked at
Lines 7-8 of Algorithm 1, the modification cannot violate
schedulability. As to a non-shared task, any potential impact
from the change in the shared task’s priority is captured by
the schedulability check in Line 18 of Algorithm 2; therefore,
no additional verification is required. ]

VII. EVALUATION

In this section, we evaluate the schedulability performance
of the proposed RPS framework.

Task set generation. We generate gang task sets based on
[6], [8], [11], [18]. The settings explore all combinations of
five parameters: (S1) the number of processors m is chosen
from {8,16}; (S2) the number of tasks n is selected from
{m, 2m,2m, 3m}; (S3) the task parallelism m; is uniformly
selected from either [1,m/2] (denoted by L) or [1,m] (denoted
by H) ; (S4) the deadline model of each task is either implicit-
deadlines D; = T; (denoted by I) or constrained-deadlines
D; < T; (denoted by C); and (S5) the gang task set utilization
Ucans = Y~(m; - C;/T;) is varied from 0.1m to 1.0m in
increments of 0.1m.

For each task set, given m, n and U®*"9 in S1, S2 and
S5, respectively, m; and U;=m;-C;/T; of each task are
determined by S3 and the UUnifast algorithm [19], such that
all tasks in each task set satisfy U; < m;. Then, the period
T; for each task is uniformly selected from [100,1000]ms,
and the worst-case execution time C; is set to U; - T;/m,.
The relative deadline D; is determined by 7; for I, and
uniformly distributed in [max(0.87;, C;), T;] for C. For each
combination of parameters S1-S5, we generate 1000 task sets,
resulting in a total of 2 x 4 x 2 x 2 x 10 x 1,000 = 320,000
task sets. Each unique configuration of parameters S1-S4
is represented as a tuple, where “*” means all values in
the corresponding parameter; for instance, the configuration
(16, 40, H, *) corresponds to task sets with m=16, n=40,
m; € [1,m], and both implicit- and constrained-deadline task
models, respectively.
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Fig. 3: The ratio of task sets deemed schedulable by each approach, under different task set configurations

Comparison approaches. We compare the ratio of task sets
deemed schedulable by the following approaches.

e SS—FP: stationary scheduling with FP, tested by its
schedulability analysis [10],

e SPS—FP: strictly partitioned scheduling with exclusive
execution and FP [11], tested by the exact FP uniproces-
sor schedulability analysis [13],

e SPS—EDF: strictly partitioned scheduling with exclusive
execution and EDF [11], tested by the exact EDF unipro-
cessor schedulability analysis [14], [20],

e« RPS-FP1 and RPS—FP2: RPS-FP-EE with Algorithms 1
and 2, tested by Theorems 2 and 3, respectively.

For comparison, the Deadline Monotonic (DM) prioritization
policy is given to all FP approaches.> We do not compare ex-
isting global scheduling approaches in [6] and existing strictly
partitioned scheduling approaches in which each partition is
scheduled by global scheduling [11], as it has been reported
in [11] that they exhibit poor performance compared to the
above comparison approaches.

TABLE II: The ratio of task sets deemed schedulable by each
approach, normalized by SPS-FP (%)

(m, n) SS-FP SPS-FP SPS—-EDF RPS-FP1 RPS-FP2
(8, 8) 108.98%  100.00% 113.64% 112.20% 119.30%
(8, 12) 108.28%  100.00% 116.45% 114.45% 126.92%
(8, 16) 105.59%  100.00% 119.02% 114.62% 131.53%
(8, 20) 103.45%  100.00% 120.73% 114.04% 134.63%
(16, 16) 103.64%  100.00% 118.73% 114.11% 132.90%
(16, 24) 99.67%  100.00% 121.54% 114.56% 140.97%
(16, 32) 95.92%  100.00% 122.90% 112.64% 143.93%
(16, 40) 93.63%  100.00% 124.29% 111.63% 146.17%

Overall schedulability performance. Table II presents the
overall ratio of schedulable task sets for the combinations
of S1 and S2, using SPS—-FP as a baseline. The results are
aggregated over both deadline models (C and I in S4) and both
task parallelism ranges (L and H in S3). While SPS—-EDF con-
sistently outperforms SPS—FP due to the superiority of EDF
over FP on uniprocessor scheduling, RPS—-FP2 shows better
schedulability performance than SPS—EDF by 4.98%—-17.60%
even though RPS—FP2 employs the prioritization policy of FP.

3Recall that RPS-FP2 employs modified task priorities from DM, accord-
ing to Algorithm 3.
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RPS-FP2 also outperforms SS—FP by 9.47%-56.11%, which
is known as a state-of-the-art non-SPS scheduling.

Table II reveals a similar trend for both m=8 and m=16:
as the number of tasks n increases, the schedulability ratio of
SS—FP declines, whereas those of SPS—-EDF and RPS-FP2
improve. Also, we observe that the schedulability performance
trend for different deadline models does not vary much; for
example, compare Fig. 3(a) for (16, 16, H, C) and Fig. 3(b)
for (16, 16, H, I), both of which share the same configuration
except the deadline model. Therefore, the remainder of this
section presents evaluation results by focusing m = 16 and
the implicit-deadline deadline model.

Impact of task parallelism heterogeneity. Fig. 3(b) and
(c) present the schedulable task sets for the (16, 16, *, I)
configuration, differing only in the task parallelism ranges
H and L. As shown in Fig. 3(b), the proposed approach
RPS-FP2 outperforms all other approaches by a significant
margin of at least 43.1% under (16, 16, H, I) where task
parallelism spans the entire processor range from 1 to m.
In this configuration, SPS—-EDF ranks third in schedulability
performance, performing even worse than SS-FP. On the
other hand, as shown in Fig. 3(c) under limited task parallelism
(up to m/2), SPS—EDF performs best but slightly outperforms
RPS-FP2 by 6.1%, while RPS-FP2 provides the best per-
formance among all FP-based methods.

This can be attributed to the fundamental design of RPS.
While SPS suffers from performance degradation when han-
dling tasks with large parallelism due to its restricted flexibility
in forming multiple strict partitions, RPS effectively addresses
this limitation through recursive partitioning, thereby success-
fully resolving the task parallelism heterogeneity problem of
gang scheduling, which is the goal of this paper.

Impact of the number of tasks. Fig. 3(b) and (d) show the
ratio of schedulable task sets under (16, *, H, I) that differ
only in the number of tasks (16 vs. 40). While the overall
trend remains consistent across both cases, the performance
gap between RPS—FP2 and other approaches becomes more
pronounced as the number of tasks increases. In both configu-
rations, the second-best performing approach is SS-FP, with
RPS-FP2 outperforming it by 43.1% under (16, 16, H, I) and
by 88.6% under (16, 40, H, T). The results demonstrate that our
proposed approach introduces less pessimism for more tasks
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in utilizing remaining processors and applying schedulability
analysis, compared to existing approaches.

Effectiveness of shared-task priority promotion. While
RPS-FP2 consistently outperforms RPS—-FP1 across all task
set configurations, we observe the performance gap is partic-
ularly influenced by the task parallelism range. For example,
when m=16, RPS-FP2 outperforms RPS—-FP1 by 2.8% and
3.9% under the (16, *, L, C) and (16, *, L, I), respectively.
The improvement becomes significantly more pronounced in
high-parallelism range H, where RPS—FP2 achieves 65.9%
and 71.7% improvements over RPS—FP1 under the (16, *,
H, C) and (16, *, H, I), respectively. This can be attributed
to a key characteristic of RPS-FP-EE, where each task can
be interfered not only from directly competing tasks but also
from indirectly interfering ones (as described in Section 1V).
The observed results indicate that the prposed RPS—-FP2 ef-
fectively alleviates indirect interference by employing a simple
yet powerful mechanism: elevating the priority of shared tasks
(with larger m;).

VIII. RELATED WORK

Gang scheduling, which is a special case of parallel schedul-
ing, is designed and considered for efficient operations for
high-performance computers subject to high-throughput [21]-
[23]. With the development of parallel processing units (e.g.,
[1], [2]) and various parallel programming models (e.g, [24],
[25]), recent studies consider real-time gang scheduling. In this
context, two main scheduling paradigms have been considered:
global scheduling (GS), where the threads of a gang task
can be executed on any available processors at run-time,
and stationary scheduling (SS), where each task is statically
assigned to a fixed subset of processors. Regarding preemptive
gang scheduling for GS, there have been several studies on
the timing guarantee of FP-GS [3]-[6] and EDF-GS [6]-[9],
while some studies try to find optimal scheduling algorithm
for GS [5], [26]. Regarding non-preemptive gang schedul-
ing for GS, there exist a few studies that try to guarantee
schedulability [18], [27]-[30]. When it comes to SS, a study
in [10] is the only existing approach to SS-FP that offers
timing guarantees by its schedulability test and processor-task
mapping algorithm.

Recently, strictly partitioned scheduling (SPS) has been
proposed and evaluated in [11], [31]. Despite its simplicity,
SPS has shown superior empirical performance in terms of
schedulability compared to GS and SS. Building on this,
we generalize the SPS framework to allow each partition to
recursively accommodate different gang tasks with varying
degrees of parallelism m; efficiently, thereby addressing the
core challenge in gang scheduling—the heterogeneity of task
parallelism requirements.

IX. CONCLUSION

This paper presented RPS, a hierarchical scheduling frame-
work that generalizes SPS for real-time gang tasks. To fully
realize the potential of RPS, we developed a tight and inter-
pretable schedulability analysis of RPS-FP-EE and designed
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effective partitioning and task assignment strategies by lever-
aging the proposed analysis. Our results demonstrated the
effectiveness of RPS in improving schedulability. As future
work, we plan to explore the application of RPS under other
scheduling modes and prioritization policies.
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