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Abstract— Edge devices for robotics in hazardous environ-
ments, such as rescue drones, navigate complex terrains while
transmitting images to remote servers for anomaly detection,
including wildfires. However, these devices operate under strict
resource constraints, prioritizing operational-critical tasks (e.g.,
autonomous navigation) while handling image-processing work-
loads with minimal overhead. Offloading computation to a
remote server can alleviate this burden, but unstable network
conditions can degrade accuracy and timeliness. To address
these challenges, this paper presents a novel offloading frame-
work that balances computational efficiency and accuracy in
image-processing tasks. Specifically, it ensures (R1) a minimum
accuracy level for individual image-processing tasks associated
with different camera sensors and (R2) maximizes the overall
image-processing accuracy across all sensors. Our approach
builds on an edge-server collaborative image reconstruction
architecture, where images are divided into patches and se-
lectively reconstructed. To achieve R1 and R2, we introduce:
(i) a hierarchical scheduler that effectively prioritizes patch
transmissions under resource constraints and (ii) a feedback
mechanism that adapts to network instability, ensuring reliable
offloading and inference. Experimental results demonstrate that
our framework maintains high accuracy and timely processing,
even under network failures.

I. INTRODUCTION

The demand for deploying machine learning on edge
devices is rapidly growing across various industries [1]
including robotics in hazardous fields [2], [3]. In practical
applications, edge devices must handle multiple tasks si-
multaneously, processing essential real-time operations on-
device while offloading secondary tasks to a server for further
computation. Consider a mountain search and rescue (SAR)
drone [4], which is equipped with several specialized camera
sensors, each performing a unique function. In disaster sce-
narios, the SAR drone autonomously navigates wooded ar-
eas, transmitting images to headquarters to detect anomalies
like wildfires or injured individuals. As an edge device, the
SAR drone allocates most of its computational resources to
operation-critical tasks like autonomous navigation, necessi-
tating the offloading of image-processing mission tasks, such
as object detection and classification, to external servers.
Such an edge-server collaborative system must ensure that
offloaded tasks are completed within strict time constraints
on the server side, enabling real-time decision making in the
field, which poses the following challenges.
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Fig. 1: System overview

C1. Limited and shared computing capability of each edge
device: image-processing mission tasks must be exe-
cuted or preprocessed for offloading while consuming
as little as on-device CPU/GPU resources.

C2. Network instability: as data from camera sensors need
consistent transfer to the server for processing, the sys-
tem must address unstable network conditions to ensure
timely completion of mission tasks on the server side
under extreme environments, e.g., disaster scenarios.

To be effective in scenarios like the SAR drone, this
paper targets a framework designed to meet the following
requirements while addressing challenges C1 and C2:
R1. The proposed framework should ensure a minimum

level of accuracy of the image-processing mission task
(e.g., object detection, classification) for each camera
sensor, which provides consistent minimal operational
performance for different functions associated with their
respective camera sensors, thereby achieving system
stability and reliability.

R2. The proposed framework should maximize the aggre-
gated accuracy of image-processing mission tasks for
different camera sensors, which optimizes the overall
system performance.

Related work unsupportive of R1/R2 under C1/C2.
Many prior studies have investigated methods for achieving
effective image-processing within the constraints of edge
devices. A naive approach is to run image-processing mission
tasks directly on the edge device and transmit only the results
to the server [5], [6]. However, only limited capacity remains
for additional processing in our target system, where the edge
device (SAR drone) must prioritize operation-critical tasks
comsuming most of computing resources (e.g., autonomous
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navigation). To address this, some studies propose transmit-
ting raw image data to the server for image-processing [7].
Yet, in environments with limited bandwidth and unstable
connections, it is difficult to ensure the successful offload-
ing of all data [8]. Partial data transfer disrupts inference
of image-processing tasks, and re-requesting missing data
introduces latency, compromising timing guarantees. Other
studies [9]–[11] suggest compression methods to reduce
bandwidth usage and improve performance while protecting
privacy; however, these approaches require encoding on
the edge device, which is challenging to implement within
resource-constrained environments and therefore unsuitable
for our target scenario.

In this paper, we develop a framework that accomplishes
R1 and R2 under C1 and C2, illustrated in Figure 1. As a
foundation for our framework, we choose the edge-server
collaborative image reconstruction architecture [12] with the
reconstruction model of Masked AutoEncoder (MAE) [13],
which provides a robust interface for achieving the goal, as
it enables images to be divided into small patches, reducing
transmission load, and allowing for partial reconstruction
for image-processing tasks, even when not all patches are
received. On top of the interface, we propose the hierarchi-
cal scheduler and the feedback mechanism, which are key
components in achieving the goal, to be detailed now.

The hierarchical scheduler is a key component of our
framework, designed to achieve both R1 and R2 by primarily
addressing resource constraints of edge devices (i.e., C1).
This scheduler incorporates two main parts: the intra-task
and inter-task schedulers. The intra-task scheduler organizes
the transmission order of patches within each image to
enhance the accuracy of each image for a given number of
patches, thereby contributing R2 by maximizing the accuracy
of individual images. Meanwhile, the inter-task scheduler
assigns transmission priorities among patches from different
images, with each image’s patches pre-sorted by the intra-
task scheduler, so as to ensure a minimum number of
patches of every image to be transmitted (achieving R1) and
maximize the sum of the expected accuracy of all images
(achieving R2).

Also, we propose a feedback mechanism within the
framework designed to handle the challenges of network
instability, which can result in discrepancies between patches
transmitted by the edge device and those successfully re-
ceived by the server. This mechanism ensures that accuracy
requirements are met despite varying network conditions by
providing periodic feedback from the server to the device
regarding useful information such as the number of received
patches. The feedback mechanism operates on both long-
term and short-term scales. Feedback on a long-term scale
adjusts the transmission margin (that controls minimum re-
quired patches) based on historical loss rates, adding stability
without overcompensating for isolated failures. Feedback on
a short-term scale, on the other hand, reacts immediately
to current network conditions by calculating the difference
between patches sent and received, dynamically changing
scheduling policies to meet accuracy targets. This dual feed-

back approach maintains system efficiency while addressing
performance requirements under network fluctuations.

We evaluate the performance of our system under various
task periods and patch transmission configurations. Without
network failures, our system achieves up to 11% higher accu-
racy compared to baseline systems while timely transmitting
the patches required for the minimal operational performance
of individual camera sensors. Even under network failure
conditions, our framework prioritizes images subject to min-
imal operation performance in a time-predictable manner
while achieving no deadline miss, which cannot be accom-
plished by the baselines.

This paper makes the following contributions.
• Developing the first framework that achieves R1 and R2,

which is necessary for an edge-server collaborative robot
system in hazardous fields;

• Presenting the architectural design that supports the pro-
posed framework (Section II);

• Designing a hierarchical scheduler consisting of intra-task
and inter-task schedulers (Section III);

• Proposing a feedback mechanism that provides resiliency
for the proposed framework (Section IV); and

• Demonstrating the effectiveness of the proposed frame-
work using real-world experiments (Section V).

II. SYSTEM DESIGN

In this section, we present the system design of our
framework, which establishes the foundation for achieving
R1 and R2 while addressing the challenges of C1 and C2.

Base architecture with reconstruction model. Due to
the challenges C1 and C2 presented in Section I, we need to
find a base architecture, which features as follows: instead
of directly running the target application for each image
and sending the result to the server, (i) the edge device
not only minimizes its workload to process each image
(addressing C1), (ii) but also some loss of packet transmitted
to the server does not nullify the result of image-processing
mission tasks (addressing C2). Therefore, we apply the edge-
server collaborative image reconstruction architecture [12]
with the MAE reconstruction model [13]. The MAE model’s
reconstruction capability enables it to restore original images
from a limited number of patches, achieving objective (i).
Additionally, its ability to reconstruct images from partial
data supports efficient offloading, which minimizes network
resource consumption and makes it well-suited for environ-
ments subject to network failure, achieving objective (ii).

Once MAE is selected as a reconstruction model to be
incorporated into the edge-server collaborative image re-
construction architecture, our framework has the following
components, illustrated in Figure 1.

Camera sensors. The edge device is equipped with mul-
tiple camera sensors that periodically send images (frames)
to the hierarchical scheduler (① in Figure 1), each operating
at a different period according to its criticality.

Hierarchical scheduler. When an image arrives, the edge
device preprocesses it by dividing it into patches of a
specified size and quantity. The following schedulers (or
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launcher) then determine the order in which patches are
transmitted:
• Intra-task scheduler (③): After an image is divided into

multiple patches, this component decides the sequence
of which patches to process from the same image.

• Inter-task scheduler (⑤): This component selects which
camera sensor’s image patches to prioritize for trans-
mission, based on the incoming images from multiple
sensors. Then, it sends the selected patch to the network
module.

• GPU execution launcher (④): To improve the quality
of the selected patches in the intra-task scheduler, this
component leverages the GPU, to get the attention in-
formation (to be detailed in Section III-B) as soon as an
image is received from the camera sensor; then it sends
the result to the intra-task scheduler.

Importantly, the hierarchical scheduler is central to achiev-
ing R1 and R2. Section III will describe the fundamental
operations without accounting for network failures, while
Section IV will present how we adapt the hierarchical
scheduler for the environments subject to network instability.

Network module. The module in the edge device trans-
mits a patch to the server (⑦), as soon as it receives a patch
from the inter-task scheduler.

Image reconstruction module. This module in the server
collects all patches transmitted from the edge device into its
patch buffer and performs the image reconstruction process
on a set of patches belonging to the same image.

Image-processing module. This module in the server uti-
lizes the reconstructed image to execute the designated target
image-processing mission tasks (e.g., image classification,
object detection). No additional fine-tuning is applied to the
reconstructed images prior to these tasks.

Feedback module. This module in the server provides
feedback to the edge device, which is a key to be detailed
in Section IV.

III. HIERARCHICAL SCHEDULER

We design a hierarchical scheduler that achieves both R1
and R2, focusing solely on C1. The hierarchical scheduler
mainly consists of intra-task and inter-task schedulers. The
intra-task scheduler determines the order of patches of each
image to be transmitted, in order to maximize the accuracy
of each image under a given number of transmitted patches,
contributing to R2. The inter-task scheduler determines the
patch (from different images) to be transmitted in each time
slot, such that (i) the number of transmitted patches for each
image within its deadline is no smaller than the threshold
given by the criticality of its camera sensor (achieving R1),
and (ii) the sum of the expected accuracy of all images is
maximized (achieving R2).

A. Task Model

Each camera sensor, which is a task of the system, τi ∈ τ
is modeled as follows. Each camera sensor τi captures an
image every Ti time unit, where the x-th image from τi
is represented as Ii,x. According to the approach in [13],

we divide each image Ii,x into 196 patches {P q
i,x}1≤q≤196

(arranged in a 14×14 grid), where P q
i,x denotes the q-th patch

of Ii,x (which is expressed as Pi,x when q is irrelevant). Let
∆ represent the time spent waiting for a single patch to be
placed onto the network medium. All patches Pi,x from an
image Ii,x captured at time t must launch its transmission to
the server before t+Ti (called transmission launch deadline,
or shortly deadline).

Each image captured by each camera τi shares a threshold
ni for the number of patches to be transmitted to ensure
minimal operational performance associated with τi (to
achieve R1); we call ni the ground patch count of τi. In
the absence of network failures, ni is determined based
on the relationship between the number of patches and
the accuracy of the image-processing mission task (e.g.,
Figure 2(d)), reflecting the minimal operational performance
required for each camera task’s priority. However, when
network failures occur, adjustments to ni, are necessary to
maintain performance, which will be provided in Section IV.

Using the notion of the ground patch count, we define
the state of each image Ii,x (denoted by Si,x) at t, whose
deadline is later than t as follows: ground state (Si,x=GS)
in which the number of patches of Ii,x launched to be
transmitted to the server at t is not larger than ni, or extended
state (Si,x=ES) in which the number at t is larger than ni.
Then, the mode of the edge device (denoted by M) at t is
defined as follows: ground mode (M=GM) in which there
is at least one image with Si,x=GS (whose deadline is later
than t) at t, or extended mode (M=EM) in which there is
no such an image.

B. Intra-Task Scheduler

The intra-task scheduler aims to enhance accuracy by
determining the order of patches within an image to be
processed and sent to the server (after competing the use of
the network medium according to the inter-task scheduler).
We leverage two key directions (by observations) to rank
the patches: (O1) using the attention values from the Vision
Transformer (ViT) [14] to prioritize certain patches, and (O2)
balancing the information content across patches to ensure a
comprehensive representation.
O1. The attention mechanism allows models to learn rela-

tionships within data. In ViTs, this mechanism captures
relationships between image patches, enhancing the
model’s understanding of the structure. Patches near key
objects typically receive higher attention values, indicat-
ing their importance. In networked environments where
image patches are transmitted, prioritizing patches with
higher attention values ensures that essential parts are
sent first (whereas lower-priority patches may not be
selected for transmission by the inter-task scheduler).
This approach preserves core information, enabling im-
age recognition even with limited bandwidth or unstable
network conditions, thereby improving transmission ef-
ficiency and retaining critical content.

The early layers of the Vision Transformer focus on
distributing attention evenly across all patches to capture
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Fig. 2: Motivational experiment results

general information about the entire image according to
[15]. The intermediate layers, on the other hand, emphasize
assigning higher attention to the important regions of the
image, prioritizing accurate information extraction. Mean-
while, the later layers redistribute attention to less critical
areas, contrasting them with the key patches to achieve a
comprehensive understanding of the image.

Our system’s reconstruction, relying on a limited num-
ber of image patches, benefits significantly from utilizing
intermediate-layer attention values, which focus on critical
regions. As shown in Figure 2(a), early and late layers are
less effective at capturing essential areas, while intermediate
layers achieve high-quality results even with only 15% of
patches. Experiments using attention values from specific
layers, as shown in Figure 2(b), confirm that intermediate
layers deliver the best performance in reconstruction and
classification, highlighting their superior ability to emphasize
critical regions and achieve optimal accuracy. Additionally,
exiting at intermediate layers, rather than processing all
layers, improves computational efficiency.

Therefore, we calculate patch priority using the attention
values from the intermediate layers of the ViT model.
O2. We hypothesized that it would enhance image recon-

struction to combine two different types of patches:
(i) patches with high attention values containing direct
information about the objects, and (ii) patches from
background areas. This hypothesis stems from the rea-
soning that solely focusing on patches near objects
might limit the ability to reconstruct the entire image ef-
fectively. For instance, after capturing sufficient details
about the object’s regions, incorporating information
from the background rather than continuing to prioritize
the object area could provide the additional context
necessary for a more complete reconstruction.

An experiment was conducted to combine the two types
of patches in various ratios, each tested with different total
numbers of patches. The results are illustrated in Figure
2(c). We observed that mixing the two approaches in ap-
proximately equal proportions consistently yielded the best
overall performance, emphasizing the importance of balanc-
ing attention-based selection and randomness for effective
image reconstruction. We can examine that as the number of
patches increased to around 60, the object-related informa-

tion became sufficient, and incorporating background details
alongside object features further improved reconstruction
results. This highlights the effectiveness of maintaining a
balanced approach for varying patch counts.

Based on observations O1 and O2, the intra-task scheduler
selects patches equal proportion (0.5 ratio of randomly cho-
sen patches) balancing attention-based and randomly chosen
patches. For each task, the scheduler tracks the number of
patches selected from both the attention value order and the
random order, ensuring this balance. If more patches are se-
lected from one order, the next patch is chosen from the other
to restore equilibrium (while being initially selected from
the attention value order). For example, if three patches are
selected from the attention order and two from the random
order, the next patch will be chosen from the random order.
These patches are then organized for task-wise selection
and dispatched by the inter-task scheduler. It is important
to note that the intra-task scheduler can leverage attention
information from the ViT only when GPU resources are
available, which is handled by the GPU execution launcher.

C. Inter-Task Scheduler

To satisfy R1, each image Ii,x of τi must transmit at least
ni patches before the next image Ii,x+1 of τi is captured. To
do this, we prioritize patches from images with Si,x=GS,
which implies applying two different scheduling policies
depending on the system mode. First, if the system mode
is the ground mode (i.e., M=GM) meaning that there is at
least one image with Si,x=GS, we apply a scheduling policy
that achieves R1. Second, if the system mode is the extended
mode (i.e., M=EM) meaning that there is no such image,
we apply a scheduling policy that achieves R2.

Achieving R1. For the ground system mode, while we
apply most (if not all) prioritization policies to the prior-
itized patches from images Si,x=GS, we choose to apply
preemptive EDF (Earliest Deadline First) with a minimum
preemption time unit of ∆, due to its optimality of scheduling
periodic tasks in meeting their deadlines [16]. Then, we
adapt the well-known EDF schedulability condition [16] to
guarantee R1, as follows.

Lemma 1: If a set of camera sensors τ satisfies the
following condition, every image Ii,x of τi ∈ τ is guaranteed
to send at least ni patches within its deadline.
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∑
τi∈τ

ni ·∆
Ti −∆

≤ 1.0 (1)

Proof: Since our system operates similarly to preemp-
tive EDF on a uniprocessor where the total execution time
of each Ii,x is ni · ∆, we refer to Theorem 9 from [16].
According to [16], it is proven that in a preemptive EDF
scheduling on a uniprocessor, if the total utilization of the
task set does not exceed 1.0, the timely execution of every
job of the task set is guaranteed.

However, unlike [16], our scheduler operates with a mini-
mum time unit ∆ and exhibits non-preemptive characteristics
for sending patches. Once the sending of patch Pi,x of τi
begins, it cannot be interrupted by any other patches for the
interval of ∆, which is equivalent to reducing Ti of Theorem
9 from [16] to Ti −∆, which proves the lemma.

Achieving R2. Once the system mode transitions from
GM to EM, we need to select the patch to be transmitted
among the patches of different images, in order to improve
the sum of expected accuracy of all images whose deadlines
have not yet passed. To this end, we analyze the relationship
between the number of patches to be used for the image
reconstruction and the resulting accuracy of the image-
processing mission task, as follows.
O3. We plot the accuracy improvement according to in-

creasing the number of patches used for the image
reconstruction. As shown in Figure 2(d), we observe
that the function f(x) is increasing and approximately
concave, which provides a potential to establish a foun-
dation for optimally selecting the patch for each time
for maximizing the sum of the accuracy of all images.

From the empirical results in Figure 2(d), we utilize the
property of the function, being increasing and concave. That
is, as the number of patches used for the image reconstruction
(denoted by x) increases, the resulting accuracy difference
between applying x and applying x+1 decreases. Therefore,
to maximize the expected accuracy improvement using one
additional patch for the image reconstruction, we need to
choose the patch from an image whose number of patches to
be ready for the image reconstruction is the smallest, which
is how the inter-task scheduler works.

In summary, under the ground system mode (GM), the
inter-task scheduler selects the patch to be transmitted by
the EDF policy among patches whose respective images are
in the ground state, achieving R1. Under the extended system
mode (EM), the inter-task scheduler selects the patch whose
number of transmitted patches is the smallest, achieving R2.

D. Overall Workflow

According to the mechanisms of the intra-task and inter-
task schedulers, we present the overall workflow with num-
bers in Figure 1. ①: When an image is generated by a
camera sensor, it is divided into patches and added to the
priority queue of the corresponding task in the intra-task
scheduler. ②: At the same time, the image is sent to the
GPU execution launcher to calculate attention values (only if
the GPU is available). ③: Initially, as the patches do not yet

have assigned priorities, they are temporarily prioritized at
random.④: Once the GPU execution launcher completes the
attention value calculations, the results are sent to the intra-
task scheduler. ⑤: The intra-task scheduler then updates the
priority of each patch based on the attention value order. ⑥:
The inter-task scheduler then checks the system mode. With
the ground system mode, the scheduler uses EDF policy to
prioritize and schedule patches belonging to images with the
ground state. With the extened system mode, the scheduler
selects the image with the fewest transmitted patches and
sends the highest-priority patch of the image from the priority
queue in the intra-task scheduler.

This process ensures that the hierarchical scheduler not
only provides consistent minimal operational performance
(achieving R1), but also maximizes overall system perfor-
mance (achieving R2), by dynamically adapting the current
system mode according to individual image states.

IV. FEEDBACK MECHANISM

Network instability may cause transmitted patches from
the device to be lost or corrupted before reaching the
server. The device relies on its transmitted patch count for
scheduling decisions, but discrepancy can arise if the server
receives fewer patches. This discrepancy hinders the system’s
ability to guarantee a minimum level of accuracy within
the required time frame. For instance, the device might
assume that all ni patches for each task τi’s image have
been successfully transmitted and switch the state of the
image to ES. At the same time, the server has yet to receive
all ni patches. Consequently, this can lead to a failure to
transmit as many patches of an image as the ground patch
count ni. To address this issue, our system incorporates a
feedback mechanism through which the server periodically
provides the edge device with information on the number of
patches received and more. Based on this feedback, the edge
device then updates its transmitted patch count and adjusts
its scheduling policy accordingly.

A. Information Exchange

Piggyback from edge device to server. The edge device
maps two indices to each patch before transmission: one
specifying the patch’s position within the image, and another
reflecting the priority of patches within the image, which
is assigned by the intra-task scheduler. These indices are
piggybacked onto the corresponding patch to be transmitted
to the server.

Feedback from server to edge device. Upon receiving
the patches, the server utilizes the position indices to execute
the MAE reconstruction process effectively. Periodically,
the server provides feedback to the edge device through
periodic feedback message, detailing the priority indices of
all received patches for a given image. This feedback enables
the edge device to refine its scheduling and transmission
strategies through the hierarchical scheduler.

Feedback information processing at edge device. With
the server’s feedback, the edge device identifies the largest
priority index among the received patches as the latest one
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acknowledged by the server. Using this information, the
device estimates how many patches the server has received
and how many remain to be transmitted for the current image.
By analyzing the scheduler priority indices in the feedback,
the device compares the priority indices of sent patches with
those received by the server to identify lost patches and
prioritize their retransmission.

B. Feedback into Hierarchical Scheduler

To further maintain stable task performance, the edge
device integrates feedback mechanisms, which adapt the
hierarchical scheduler for robust operation under network
failures. On a long-term scale, feedback analyzes historical
loss rates received from the server, updating the expected
loss rate and determining the additional patches needed
for consistent performance. While on a short-term scale, it
focuses on immediate discrepancies, comparing the patches
sent by the device with those received by the server. This
process allows the device to dynamically adjust its mode
and recalculate the required additional patches by referencing
the loss rate, ensuring timely and accurate delivery even in
fluctuating network conditions. Together, these mechanisms
enable the edge device to balance real-time adjustments with
sustained efficiency.

Applying periodic feedback on a long-term scale.
Utilizing the periodic feedback message on a long-term
scale, the system adjusts the network loss rate based on
past loss history, adding a margin to the ground patch
count to support minimal operational performance. Since the
feedback message on a long-term scale aims to add a margin
to ensure the ground patch count, it should not fluctuate
significantly in response to a single large network failure.
Moreover, it is used solely for statistical purposes, ensuring
that images whose deadlines have not yet passed remain
unaffected during the period of receiving feedback. Instead,
the adjustments are applied to subsequent tasks to maintain
consistent performance over time.

The calculation for feedback messages on a long-term
scale is as follows: it is based on the average loss rate from
the most recent H periodic feedback messages received from
the server. If fewer than H number of records are available,
the average is calculated from all available feedback. The
loss rate calculated through feedback (denoted by γ) is con-
tinuously applied, adjusting ni for each τi upon receipt at the
server (i.e., ni · 1

1−γ ). This adjustment ensures that accuracy
requirements are met efficiently, as the system maintains a
stable margin for ground patch count transmissions without
overreacting to isolated network failures.

Applying periodic feedback on a short-term scale.
Server feedback enables the system to adjust the transmitted
ground patch count ni to meet target accuracy. Unlike long-
term feedback, which smooths network fluctuations based on
average drop rates, short-term feedback directly impacts im-
ages with unpassed deadlines during the feedback reception
period. This allows the edge device to adjust ni based on
current transmission success rates.

Server feedback includes indices of successfully received
patches, as assigned by the intra-task scheduler. Using this
feedback, the device determines up to which index the server
has received patches. If the latest index is smaller than ni,
the device identifies that the server has not yet received all
required patches for the image. This allows the device to
pinpoint missing patches, prioritize them at the top of the
intra-task priority queue, and retransmit them efficiently.

Each image Ii,x starts in the state Si,x set to GS. While
in GS, the edge device operates in GM and continues
sending patches. Upon receiving feedback, the system checks
whether ni patches have been successfully received by the
server. Once the required number of patches (ni) is confirmed
to have been transmitted (nsent ⩾ nrecv), Si,x transitions from
GS to ES. When all images transition to ES, the system
switches its mode to EM. This calculation incorporates the
loss rate (γ) to ensure efficient and accurate delivery while
accounting for network inconsistencies.

If the server’s feedback indicates that nrecv, the number of
patches received, is less than ni and Si,x is in ES, this reveals
a discrepancy where the system prematurely transitioned the
image state from GS to ES despite incomplete patch delivery.
In such cases, the system reverts the state of the image to GS
and the overall mode to GM. The system then recalculates
the total number of patches required, including patches still
pending transmission and those requiring retransmission.

V. EVALUATION

A. Experiment Setup

Hardware. The server operates on a Windows 11 operat-
ing system with an AMD Ryzen 5 7500F 6-Core Processor
and an NVIDIA RTX 4060 Ti GPU. The edge device
operates on Linux Ubuntu, powered by an Nvidia Jetson
Orin Nano, which incorporates a 1024-core NVIDIA Ampere
architecture GPU, 32 Tensor Cores, and a 6-core ARM
Cortex-A78AE v8.2 64-bit CPU.

Dataset. For our experiments, we used 40,000 image sam-
ples from the ImageNet 1K validation set [17] to construct
observation graphs and 1,000 random image samples for net-
work experiments. Each image was resized to 224x224 pixels
and normalized per the ImageNet standard. Performance was
evaluated on an image classification task using the top-5
accuracy metric, widely used in previous studies [9], [18].

B. Evaluation Result

The edge device periodically transmits a single image
patch every 30ms, maintaining a steady data flow. For this
evaluation, we leverage the ViT [14] model with 12 attention
layers, to calculate attention values for image patches.

ViT layer selection & GPU-independent operation. To
determine a ViT layer that maximizes the accuracy, exper-
iments were conducted with five settings: selecting patches
randomly, and based on the attention values from the 3rd, 4th,
5th, and 6th ViT layers; each setting was tested with periods
of 1, 1.5, and 2 seconds. As shown in Table I, selecting
patches from the 5th ViT layer not only yields 3.7%–21.9%
accuracy improvement over random patch selection, but also
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Fig. 3: Evaluation results

maximizes the accuracy among those from different ViT
layers. Therefore, subsequent experiments will use the 5th
layer, balancing accuracy and resource efficiency.

The experiment results in Table I also indicate that the
random patch selection maintains reasonable performance,
achieving 59.0%–84.2% accuracy. The system can still func-
tion reliably even when the GPU computing resource is
occupied by operation-critical tasks, which is different from
prior studies that rely on encoder computations [9], [10],
making a direct comparison less applicable.

Period Layer 3 Layer 4 Layer 5 Layer 6 Random
1.0 64.5 67.8 71.9 68.4 59.0
1.5 78.8 81.7 82.8 82.4 76.9
2.0 85.2 88.0 87.3 87.5 84.2

TABLE I: Accuracy comparison of random and intermediate
attention across different layers.

Performance for varying task periods. We evaluate
the performance of our system by comparing it against
two settings. In the first setting (EDF-RD), the inter-task
scheduler in Ground Mode (GM) follows EDF, while in Ex-
tended Mode (EM), the inter-task scheduler chooses patches
randomly. For both modes, the intra-task scheduler selects
patches at random. In the second setting (RD-RD), both inter-
task and intra-task schedulers randomly choose images and
patches at any time.

First, we evaluate three offloading tasks with periods
increasing by 1 second in four configurations: (3s,4s,5s),
(4s,5s,6s), (5s,6s,7s), and (6s,7s,8s). For all configurations,
ni for each task is set to (30,25,20), respectively, and
Lemma 1 is satisfied. Note that the value of ni is chosen to be
at most 20 according to the observation from Figure 2(b) for
minimum level of accuracy. The settings reflect real-world
scenarios, where critical tasks require shorter periods and
higher guaranteed accuracy.

As shown in Figure 3(a), our system outperforms EDF-RD
and RD-RD in all configurations. For the (3s,4s,5s) period
configuration, our system achieves 6% and 11% higher
accuracy compared to RD-RD and EDF-RD, respectively.
Notably, RD-RD fails to guarantee the deadline of ni in 92
instances, while our system and EDF-RD consistently meet
the deadline of ni across all cases, demonstrating the effec-
tiveness of applying EDF in GM to the inter-task scheduler.

Longer task periods allow more patches to be transmitted,
improving reliability in object identification and narrowing
accuracy gap between system and the settings. In contrast,
shorter periods with fewer patches widen performance gap,
highlighting the robustness of our approach.

We also conduct an evaluation to determine whether our
system operates robustly even when the period distribution
varies. The periods are set to (5s,5s,5s), (4s,5s,6s), (3s,5s,7s),
and (2s,5s,8s), with ni fixed at (30,25,20) in all cases. As
shown in Figure 3(b), the system achieves an accuracy of
85.4% when the periods are (5s,5s,5s), demonstrating high
performance, whereas it shows a lower accuracy of 76.5%
for the periods (2s,5s,8s). This difference is likely due to the
lower utilization of GS (i.e., the left-hand side of Eq. (1))
in (5s,5s,5s) compared to the higher utilization of GS in
(2s,5s,8s). Thus, when the utilization of GS is high, the time
the device spends in extended mode decreases. Consequently,
the number of patches the device can transmit for a single
image is reduced. Despite some variations caused by utiliza-
tion, our system ensures a minimum level of accuracy, even
when the period distribution changes.

Performance for varying the number of tasks. We
evaluate the accuracy of our system by increasing the number
of tasks (i.e., camera sensors) to 3, 5 and 7, respectively
having periods of 6s–8s, 6s–10s and 6s–12s with a step size
of 1s. We test 3 different settings of ni: 20, 35 and 50 for
all tasks of each case. As shown in Figure 3(c), the accuracy
varies with 88.2%–89.1% when there are three tasks. As the
number of tasks increases, the accuracy gradually decreases
to 82.4%–83.3% for five tasks and 73.6%–75.9% for seven
tasks, as each task transmits fewer patches; however, the
system remains fully operational.

We also observe that all tasks meet their deadlines except
when ni = 50 with 7 tasks, where 227 deadline misses
occur. The exception occurs because the left-hand side of
Lemma 1 exceeds 1.0, making the task set unschedulable.
This validates Lemma 1’s schedulability test as a guideline
for determining appropriate task set sizes.

Performance under unstable network condition. To
evaluate the robustness of our system in unstable network
conditions, we conducted two experiments: one with a fixed
packet loss rate and another with a fluctuating packet loss
rate. In both experiments, the task periods for three tasks
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were set to (4s,5s,6s), respectively, with ni values (30,25,20).
We set the value of H to 30, meaning it uses the latest
30 periodic feedback messages to calculate the average loss
rate. While a shorter cycle would enhance performance, the
resulting overhead becomes non-negligible. For this reason,
the server is configured to send a feedback message once per
second. The packet loss rate is set to 10%, 20%, and 30% in
the fixed loss rate experiment, while during the fluctuating
loss rate experiment, the packet loss rate changes every
5 seconds, alternating between ranges of 0%–20%, 10%–
30%, and 20%–40%, thereby simulating realistic network
dynamics such as burst losses. Results show that, in the fixed
loss rate experiment in Figure 3(d), our system with a feed-
back mechanism achieved higher accuracy and consistently
transmitted ni patches within deadlines, unlike the system
without feedback, which missed 38 deadlines at a 30% loss
rate. In the fluctuating loss rate experiment in Figure 3(e), our
system with the feedback mechanism performed significantly
better in guaranteeing the transmission of ni patches by dy-
namically adjusting to network conditions, while the system
without feedback frequently failed to meet deadlines. Al-
though the classification accuracy difference between the two
systems was not significant, our feedback mechanism reliably
transmitted ni patches under high loss rates, demonstrating
its effectiveness in maintaining performance and reliability
in challenging network conditions.

Computing resource usage. Our system periodically
sends one patch every 30ms, with the process of splitting
into patches and sending to the network module taking
about 0.1ms and scheduling around 0.05ms. This results
in an average CPU utilization of about 0.1%. GPU uti-
lization varies by layer, with approximately 1.17%, 1.85%
and 2.22% respectively for the third, fourth and fifth layers,
demonstrating efficient resource usage. The time-complexity
of scheduling is O(n), where n represents the number of
tasks (i.e., camera sensors), and the feedback mechanism
only requires updating the priority queue and estimating
the network loss rate based on the received information.
Considering the number of camera sensors in each edge
device is typically small in real-world scenarios, the overhead
remains marginal. The MAE reconstruction model, with its
1.25GB memory footprint and 12ms inference time, presents
no operational issues given resources available on server.

VI. CONCLUSION

This paper proposed a robust offloading framework for
resource-constrained edge devices operating under unstable
network conditions. Leveraging Masked Autoencoders, the
framework ensures a minimum accuracy level (R1) and max-
imizes aggregated accuracy (R2) for image-processing tasks.
The hierarchical scheduler dynamically prioritizes tasks and
patches, while the feedback mechanism adapts to network
instability to maintain performance. Experimental results
demonstrated higher accuracy and consistent task reliability
compared to baseline systems. Future work could focus on
optimizing feedback intervals and expanding the framework
to accommodate diverse scenarios.
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