
EarDVFS: Environment-Adaptable RL-based DVFS
for Mobile Devices

Jaeheon Kwak∗
Ajou University

Republic of Korea
jhkwak@ajou.ac.kr

Sangeun Oh
Korea University

Republic of Korea
sangeunoh@korea.ac.kr

Jinkyu Lee
Sungkyunkwan University

Republic of Korea
jinkyu.lee@skku.edu

Insik Shin
KAIST and Fluiz

Republic of Korea
ishin@kaist.ac.kr

Abstract— Dynamic Voltage and Frequency Scaling (DVFS) is a key
technology for enhancing power efficiency in computing devices. However,
conventional DVFS methods struggle with the unique demands of mobile
devices. Recent reinforcement learning (RL)-based approaches address
this by tailoring to mobile-specific thermal and workload characteristics.
Yet, these solutions make frequency adjustments that ignore device-
specific configurations calibrated by vendors, neglect the impact of
ambient and non-processor components—such as battery, display, and
integrated circuits—that significantly affect processor thermal manage-
ment, and rely on fixed environment-dependent parameters, limiting
adaptability across different environments. To address these limitations,
we propose EarDVFS, an environment-adaptable RL-based solution that
employs proactive throttling to combine the strengths of traditional and
RL-based methods, considers the temperatures of ambient and non-
processor components for better thermal management, and features an
environment-robust RL parameter design. Extensive experiments across
varying ambient temperatures, devices, and workloads demonstrate
that EarDVFS consistently enhances power efficiency by an average of
21.6% and up to 49.6% compared to default DVFS while maintaining
performance. Furthermore, we conduct comprehensive ablation studies
on the action, state, and reward elements of our RL model, confirming
that each element significantly contributes to EarDVFS’s adaptability and
effectiveness across diverse thermal environments.

I. INTRODUCTION

Advancements in mobile processors have enabled mobile devices
to perform a broader range of tasks with speed and performance.
However, more powerful processors necessitate improved manage-
ment of processor temperature, power consumption, and performance.
Yet, the limited battery capacity and constrained cooling solutions of
mobile devices make this management challenging.

Currently, mobile devices adjust processor frequency through Dy-
namic Voltage and Frequency Scaling (DVFS) and thermal throttling
to manage the power efficiency, temperature, and performance of pro-
cessors. Device vendors embed carefully engineered device-specific
configurations into the default system, taking into account physical
characteristics of each device to ensure reliable performance in
universal use cases. However, these traditional approaches are limited
by their reliance on predetermined rules, making them less effective
at handling mobile devices’ unique characteristics, particularly their
sensitivity to application-specific workloads and thermal conditions.

To address these shortcomings, reinforcement learning (RL)-based
DVFS methods have recently emerged [1]–[3]. These methods man-
age processor frequencies based on application-specific workload
patterns and implement more comprehensive thermal management.
Despite their promise, our analysis reveals several critical limitations
in these RL-based methods: (L1) operating based on fixed device-
agnostic parameters while disregarding device-specific configurations
that directly affect power efficiency and performance; (L2) failing to
consider ambient temperature variations and non-processor compo-
nents that significantly impact thermal management strategies; and
(L3) relying on fixed environment-dependent parameters, such as
target temperature, constrains adaptability across different conditions.

*This work was conducted while the author was at KAIST.

To address these limitations, we propose three core solutions that
establish the foundation of our EarDVFS (Environment-Adaptable
Reinforcement Learning-based DVFS):

• Proactive throttling that sets frequency boundaries instead of di-
rect frequency adjustment, maintaining RL-based benefits while
leveraging device-specific configurations (S1),

• Exploiting battery-related temperatures that stably track ambient
temperature variations and thermal impact from non-processor
components (e.g., battery, display, integrated circuits) (S2), and

• Environment-robust RL design that avoids using environment-
dependent parameters (S3).

Our solution builds upon Soft Actor-Critic (SAC) [4], which pro-
vides significant advantages over traditional DQN-based [5] methods,
particularly in handling extensive state and action spaces. Through in-
depth experiments comparing EarDVFS with existing solutions across
various environmental conditions, we demonstrate that EarDVFS
consistently delivers robust performance while improving power
efficiency by an average of 21.6% and up to 49.6%.

The main contributions of this work are as follows:

• We clarify the limitations of existing methods through systematic
experiments and deep systems understanding (§II and §III).

• We propose solutions to the identified limitations and integrate
them into the EarDVFS design (§III and §IV).

• We employ SAC to enable diverse action exploration and handle
large action and state spaces (§IV).

• We rigorously evaluate EarDVFS in diverse environments using
a stringent testbed, demonstrating its superior adaptability and
efficiency (§V and §VI).

• We conduct an ablation study to validate the individual impact
of our key design elements on EarDVFS’s behavior (§VI).

II. BACKGROUND

A. DVFS Principles

DVFS is a technique that dynamically adjusts voltage–frequency
levels to enhance system performance and power efficiency. The
voltage–frequency levels are determined by algorithms called gov-
ernors, which make decisions based on system’s workload.

Today, most mobile systems use schedutil as their default
governor. It adjusts the CPU frequency (and also voltage) levels to
maintain a target CPU utilization. The utilization is calculated by
the Completely Fair Scheduler [6], [7] as the sum of the running
time of runnable tasks and recent utilization of non-runnable tasks.
The schedutil monitors the current utilization and frequency
to adjust the new frequency to reach the target CPU utilization
(e.g., 80%). Each vendor sets their own target CPU utilization
values based on their device/processor characteristics for optimal
performance in general workloads. Therefore, arbitrary frequency
adjustments without considering these device-specific configurations
could compromise system performance and efficiency.

1

20
25

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
O

n
C

om
pu

te
r A

id
ed

 D
es

ig
n

(I
C

C
A

D
) |

 9
79

-8
-3

31
5-

15
60

-7
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
A

D
66

26
9.

20
25

.1
12

40
76

5

Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

30 40 50 60
Avg. processor temperature (°C)

0.9

1.0

1.1

1.2
Po

w
er

 c
on

su
m

pt
io

n
(W

)

(a) Power consumption and the av-
erage temperature of processors.

Utilization ↑

Temperature ↑

Time

F
re

q
u

e
n

c
y

Governor attempts to

increase frequency

Desired frequency

Real frequency

Cooling device limits

maximum frequency

(b) Throttling can override the frequency
decisions set by governors.

Fig. 1. Effects of processor temperature variations and throttling mechanisms.

B. Necessity and Principles of Throttling

Throttling is a technique that lowers processor temperature through
frequency limitation. In mobile systems, which lack cooling mecha-
nisms, throttling is essential for both safety and power efficiency.

Thermal Effects on Power Efficiency. High temperatures dimin-
ish power efficiency. To investigate this effect, we run a WebGL
rendering application [8] on a smartphone at a fixed frequency and
measure power consumption and processor temperature. Fig. 1(a)
shows power consumption and the average processor temperature.
As the average processor temperature increases, power consumption
rises, reaching 22.3% higher at 60°C compared to 30°C. This rise
in power consumption is attributed to additional power loss from
elevated leakage current and electrical resistance within the processor
as temperatures rise [9]. Therefore, effective thermal management of
the processor is essential for maintaining power efficiency.

Throttling Principles. In Linux, a framework called the cooling
device manages throttling. This framework sets the cooling state,
a value indicating the throttling intensity applied to the processor,
based on the processor-specific temperature threshold and tempera-
ture trends. Notably, the value of cooling state is determined indepen-
dently for each processor (e.g., big core cluster and GPU). Whenever
the cooling state value increases by one, the maximum frequency
level decreases by one level. For example, if the cooling state of a
big cluster reaches its maximum, it will only operate at its minimum
frequency. Throttling can overrule governors; even if utilization is
high and the governor attempts to increase the frequency, high
temperatures will cause throttling to override the desired frequency
to a lower one, as shown in Fig. 1(b). Thus, understanding processor
behavior requires attention to both governors and throttling.

III. ESTABLISHMENT OF DESIGN PRINCIPLES

In this section, we identify the limitations of RL-based DVFS
methods and propose solutions through preliminary experiments con-
ducted with the Google Pixel 6 under ambient temperature control.

A. Inefficiency of Existing Systems and RL-based Solutions

Current mobile devices make narrow-sighted throttling decisions
and are unable to optimize governors for application-specific work-
load patterns. Governors operate based on predefined rules without
considering workload information, and a cooling device throttles a
processor solely based on the temperature of a single processor.

0 300 600 900 1200
Time (s)

32

38

44

50

Fr
am

e
ra

te
s

(fp
s)

0

10

20

30

To
ta

l c
oo

lin
g

st
at

es

(a) Default governor exhibits frame
rate and cooling state fluctuations.

0 300 600 900 1200
Time (s)

32

38

44

50

Fr
am

e
ra

te
s

(fp
s)

0

10

20

30

To
ta

l c
oo

lin
g

st
at

es

(b) GearDVFS shows a stable behav-
ior, eliminating the fluctuations.

Fig. 2. Frame rates and total cooling states of processors during 3D rendering.

10 20 30 40 50
Frame rates (fps)

10°C
20°C
30°C

10 15 20 25 30
Power efficiency (PPW)

10°C
20°C
30°C

Default governor

(a) When running WebGL.

10 15 20
Frame rates (fps)

10°C
20°C
30°C

20 40 60
Power efficiency (PPW)

10°C
20°C
30°C

zTT GearDVFS

(b) When running Skype.

Fig. 3. Frame rates and PPW of the default governor, zTT, and GearDVFS
across different application types and ambient temperature levels.

This limitation results in undesirable behaviors such as performance
fluctuations. Fig. 2(a) shows the frame rates and total cooling states
of processors when a smartphone runs WebGL rendering [8] at an
ambient temperature of 20°C, configured with 10,000 fish. After 600
seconds, both frame rates and cooling states begin to fluctuate. These
fluctuations arise from a repeating cycle: (1) processors operate at
high frequencies, causing temperatures to rise; (2) rising temper-
atures increase the cooling state, triggering throttling that reduces
frequencies, frame rates, and temperatures; (3) reduced temperatures
lower the cooling state, allowing the governor to increase frequencies
again. These frequency fluctuations can result in underclocking and
core reassignments [10], degrading both performance and power
efficiency. If governors consider workload characteristics and cooling
mechanisms use broader information, these issues could be avoided.

To this end, recent studies have explored reinforcement learning
(RL)-based DVFS approaches for mobile devices [1]–[3]. Kim et al.
introduced zTT [1], which prevents throttling and maintains perfor-
mance by regulating processor temperature and application-specific
frame rate within target thresholds. Similarly, Lin et al. proposed
GearDVFS [2], which considers workload characteristics to drive
CPU utilization to a target level while simultaneously keeping target
temperature. Gong et al. developed LOTUS [3], a DVFS framework
for DNN-based object detection. They train per-application RL agent
to make frequency decisions based on workload patterns and adjust
frequencies to keep processor temperatures below the target while
considering the temperatures of all processors simultaneously. This
can mitigate the fluctuations, as shown in Fig. 2(b), but it also exhibits
degradation in both frame rates and power efficiency, revealing
remaining limitations. Rule-based approaches such as CRAVE [11]
and QUAREM [12] have also been proposed, but they suffer from
limited adaptability due to their rule-based nature and lack sufficient
consideration of thermal aspects.

B. Limitations of RL-based DVFS Methods and Solution
Despite the advancements of RL-based DVFS methods, our exper-

iments reveal their suboptimal performance in diverse environments.
To evaluate their environment-adaptability, we conduct experiments
using two applications with contrasting computing loads: WebGL
Aquarium (high load) and Skype (low load). We compare the default
governor (schedutil), zTT, and GearDVFS under varying ambient
temperatures (10°C, 20°C, and 30°C).

Fig. 3 illustrates the performance (frame rates) and power effi-
ciency (performance per watt, PPW) of each DVFS methods. At
30°C, RL-based methods show better performance than the default
governor due to its broaden-sighted thermal management. However,
in other environments, they may overly limit performance or result
in lower power efficiency. We now identify three core limitations
L1–L3 that contribute to the performance degradation and propose
corresponding solutions S1–S3 to address these challenges.

2
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

Frame rates (fps)
36
42
48

Power consumption (W)
1.5
2.0
2.5
3.0

Total cooling states
0

12
24

Avg. processor temperature (°C)
70
75
80

Default governor Proactive throttling

Fig. 4. Applying proactive throttling mitigates fluctuations.

L1: Ignoring Device-Specific Configurations. A significant lim-
itation of RL-based DVFS methods is their rigid operation focused
solely based on device-agnostic predetermined parameters (e.g., target
utilization, frame rates, or temperature thresholds).

We identify that ignoring device-specific settings in frequency
decision is problematic. GearDVFS successfully alleviates frequency
fluctuations; however, it shows a notable decrease in PPW and frame
rates compared to the default governor, with average reductions of
13.9% and 6.3% respectively, as shown in Fig. 3.

This performance degradation stems from GearDVFS’s mis-
aligned target utilization. Using ftrace [13], we reverse-engineer
schedutil’s target utilization by analyzing how it determines its
next frequency based on current frequency and utilization. This anal-
ysis confirms that the Pixel 6’s actual target CPU utilization ranging
from 15-50%, substantially deviating from GearDVFS’s fixed 80%.
Since these device-specific parameters are calibrated considering the
physical characteristics of the processor, ignoring these parameters
yields suboptimal performance. This issue is inherent to current RL-
based methods [1]–[3], as they make frequency decisions completely
independent of these device-specific configurations.

S1: Proactive Throttling. While it would be beneficial for RL-
based DVFS to learn each device’s unique configurations, these
values are often fragmented across devices or not publicly acces-
sible [14], [15]. Instead, inspired by the concept of throttling, we
propose proactive throttling—a method that constrains the maximum
frequency in advance of throttling.

Proactive throttling does not directly determine processor fre-
quency but limits maximum frequency boundaries. Within these
boundaries, the default governor makes the final frequency decision.
This approach preserves the benefits of leveraging the device-specific
configurations inherent to the default governor.

To verify the effectiveness of proactive throttling, we compare
the fluctuation scenario using the default governor as it is, and that
using the default governor with proactive throttling. The maximum
frequencies of the big, mid, little clusters, and GPU are limited to
1.83, 1.33, 1.33, and 0.4 GHz, respectively, which are the determined
through experiments. Fig. 4 shows frame rates, power consumption,
total cooling states, and average processor temperatures during a
30-minute WebGL application run. Proactive throttling not only
eliminates fluctuations but also maintains average frame rates and
reduces average power consumption, cooling state, and processor
temperature by 10.3%, 51.7% and 4.9%, respectively.

Then, how can we find the optimal maximum frequency for
proactive throttling? In Section IV, we will propose a method to
determine these values through RL. This approach preserves both the
advantages of RL—including workload-dedicated optimization and
broader-sighted thermal management—while maintaining the benefits
of device-specific configurations inherent to the default governor.

L2: Insufficiency of Considering Processor Temperature Alone.
Existing RL-based DVFS methods rely solely on processors’ temper-
ature for thermal management, overlooking other critical factors, i.e.,

10°C 20°C 30°C
Ambient temperature

0

25

50

75

C
PU

 te
m

pe
ra

tu
re

 (°
C

)

CPU GPU

0

25

50

75

G
PU

 te
m

pe
ra

tu
re

 (°
C

)

(a) Comparison at ambient tempera-
tures of 10°C, 20°C, and 30°C.

20°C 30°C 40°C
Avg. non-processor temperature

0

25

50

75

C
PU

 te
m

pe
ra

tu
re

 (°
C

)

CPU GPU

0

25

50

75

G
PU

 te
m

pe
ra

tu
re

 (°
C

)

(b) At 20°C ambient with different
non-processor average temperatures.

Fig. 5. Processor temperature differences in a fixed-frequency 3D rendering.

Battery temp. (°C)
25
35
45

GPU temp. (°C)
75
80
85

Big temp. (°C)
65
70
75

Mid temp. (°C)
65
70
75

Little temp. (°C)
65
70
75

10°C
20°C
30°C

(a) Battery temperature reflects ambient temper-
ature, while processor temperatures do not.

0 600 1200 1800
Time (s)

25

50

75

Te
m

p.
 (°

C
)

Display
Battery

GNSS
PMIC

GPU
CPU

(b) Rest–run–rest (10 min
each) at 20°C ambient.

Fig. 6. Temperatures during 3D rendering with the default governor.

the temperature of ambient and non-processor components.
Our experiments confirm their substantial impact on processor

temperature. In a test running a GPU-intensive 3D rendering ap-
plication [16] for 10 minutes at fixed minimum frequencies shows
that raising the ambient temperature from 10°C to 30°C increases
CPU/GPU temperatures from 45.0°C/47.2°C to 70.0°C/73.0°C, re-
spectively, as shown in Fig. 5(a).

Moreover, when maintaining the ambient temperature at 20°C,
increasing the average temperature of non-processor components—-
including battery, display, power management integrated circuit
(PMIC), and global navigation satellite system (GNSS) chip—-from
20°C to 40°C caused CPU and GPU temperatures to climb from
42.8°C/45.8°C to 60.9°C/64.0°C, respectively, as shown in Fig. 5(b).

These findings show that ambient temperature and thermal states
of non-processor components highly influence the temperatures of
processors. Since these factors vary with usage environment and
workload, adaptive and responsive processor thermal management
must explicitly account for both. However, most mobile systems
lack dedicated ambient temperature sensors and consist of many
thermally interactive components, making it difficult to infer ambient
conditions or the influence of other components solely from processor
temperatures. This limitation hinders RL-based approaches from
effectively leveraging such information in thermal management.

S2: Leveraging Battery Temperature. We propose using the
battery as a reliable indicator not only of ambient temperature but
also of the thermal impact from non-processor components. Among
various smartphone components, the battery is the single largest in
terms of volume, allowing its temperature to more accurately reflect
external thermal variations.

To confirm this, we run a 30-minute GPU-intensive 3D rendering
application [16] and monitor the temperatures of the big, mid, and
little CPU clusters, GPU, and battery. As shown in Fig. 6(a), while
processor temperatures fluctuate unpredictably, battery temperature
remains closely tied to ambient conditions.

Additionally, battery temperature effectively captures real-time
changes in ambient temperature. Fig. 7 presents frame rates, total
cooling states, the average temperature of processors, and battery
temperature while running a 3D rendering application [16] under the
default governor. We alter the ambient temperature every 10 minutes
between 10°C, 30°C, and back to 10°C. Although performance,

3
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

20

28

36

44
Fr

am
e

ra
te

s
10 °C 30 °C 10 °C

0 300 600 900 1200 1500 1800
Time (s)

20

28

36

44

Ba
tte

ry
 te

m
p.

0

12

24

36

To
ta

l c
oo

l.
st

at
es

70

75

80

85

Av
g.

 p
ro

c.
 te

m
p.

Fig. 7. Frame rates, total cooling states, and the temperatures of battery and
processors during 3D rendering at 10°C–30°C–10°C ambient (10 min each).

cooling states, and processor temperatures do vary, it is difficult to
infer ambient temperature fluctuations solely from these metrics. By
contrast, battery temperature exhibits distinct inflection points at 600
and 1,200 seconds, quickly indicating changes in ambient temperature
and demonstrating its usefulness as a dynamic thermal indicator.

Furthermore, the battery has the highest heat capacity among all
individual components. In an experiment where the device is idle
for 10 minutes, then run a 3D rendering application [16] for 10
minutes, followed by another 10-minute idle period, we measure the
temperatures of the CPU, GPU, battery, display, PMIC, and GNSS
chip. As illustrated in Fig. 6(b), the battery’s temperature rises and
falls more gradually than any other component, confirming it has the
greatest heat capacity and accumulates/dissipates heat at a slower rate.
Due to its large size, volume, and heat capacity the battery serves as
the most reliable indicator of the overall thermal state among non-
processor components.

Although one could theoretically monitor the temperatures of other
non-processor components—often dozens in total—incorporating all
of them into the state would inflate the model’s size and hinder
learning efficiency. Moreover, other non-processor components, hav-
ing lower heat capacities, tend to be dominated by the processor’s
heat generation and thus offer only limited additional insight. Con-
sequently, focusing on the battery temperature alone provides the
best balance between accuracy and model efficiency for thermal
management.

L3: Fixed Environment-Dependent Parameters. Existing RL-
based DVFS solutions are governed by environment-dependent vari-
ables such as target temperature and frame rates. For example, their
problem formulation and reward functions aim to maintain processor
temperature below target temperatures [1]–[3]. However, they use
fixed values for these environment-dependent parameters like target
temperature regardless of environmental conditions.

Our experiments reveal that using fixed environment-dependent pa-
rameters further reduces adaptability. For instance, WebGL achieves
average frame rates exceeding 30 fps at 10°C regardless of the method
used, but fails to maintain this rate at 30°C, as shown in Fig. 3(a). In
particular, at 30°C, since the cooling device’s throttling always takes
higher priority over any governor, no governor can achieve an average
of 30 fps. Despite this, zTT rigidly maintains its target frame rate,
demonstrating the fundamental limitation of fixed parameter values.

Similarly, target temperature settings in RL-based DVFS solutions
are flawed. As discussed with Fig. 5(a), processor temperature varies
with ambient temperature. However, RL-based DVFS approaches
maintain fixed target temperatures regardless of environmental con-
ditions, inherently limiting their adaptability.

S3: Environment-Robust RL Design. To overcome these limita-
tions, we propose an environment-robust RL-based DVFS design that

avoids using parameters with environment-dependent optimal values.
By eliminating such parameters in problem formulation, as well as in
the state, action, and reward design, the RL agent can operate without
constraints imposed by environmental conditions.

Unlike previous approaches [1]–[3], we design our problem for-
mulation to exclude temperature-related constraints. Additionally, we
design a new reward function using only minimal environment-robust
parameters. These changes allow our RL agent to remain adaptable
and robust across a wide range of environmental scenarios. Detailed
aspects of this design will be elaborated in the following sections.

IV. DESIGN OF EARDVFS

In this section we design EarDVFS, addressing the limitations of
existing approaches (L1–L3) with our proposed solutions (S1–S3).

A. Problem Formulation
The goal of a DVFS governor is to maximize performance and

minimize power consumption. Let Q(t) and P (t) denote the applica-
tion’s quality of experience (QoE), user perspective performance, and
the power consumption of all processors, respectively, at a given time
t. Based on S3 and [1], our optimization problem P1 to maximize
governor’s objectives over time T is formulated as follows:

(P1) : max
π

1

T

T∑
t

(
min(α,Q(t)) +

β

P (t)

)
(1)

In Eq. (1), π denotes the policy for adjusting the frequencies of
processors. α is the QoE value providing maximum utility to the user,
and min(α,Q(t)) limits the QoE to this maximum, indicating that
user utility does not increase beyond this level. β is the weight for
trade-off between performance and power consumption, with lower
values favoring performance.

Recent works [1]–[3] solve P1-style problems by converting them
into model-free RL problems. Model-free RL requires defining the
action, state, and reward. In RL-based DVFS, processor frequency
adjustments, workload and system status, and the self-evaluation
of frequency decisions correspond to the action, state, and reward,
respectively. Its goal is to design the action, state, and reward
effectively to derive the optimal π through learning.

Existing RL-based DVFS studies [1]–[3] have used value-based
RL methods like DQN [5], which learn a Q-function representing
expected cumulative reward for taking an action in a given state.
However, value-based RL struggles to estimate the Q-function when
the state and action spaces are large. This drawback does not
align with our objective of leveraging extensive information such as
processor and battery temperature and cooling state.

To address this, we adopt Soft Actor-Critic (SAC) [4], [17]. In
this approach, Actor decides actions based on a policy and learns to
maximize expected rewards, while Critic estimates expected rewards
to help refine the policy. SAC incorporates two key innovations: 1)
maximizing both expected rewards and policy entropy for diverse
action exploration, and 2) its Actor-Critic structure enables stable
learning even with large state and action spaces. This design makes
the policy more robust and adaptable across various environments.

B. Action, State, and Reward Design

To solve problem P1, we design EarDVFS’s three components:
action, state, and reward based on S1, S2, and S3, respectively.

Action Design. Previous RL-based DVFS methods focused on
finding an optimal π to directly adjust processor frequencies. How-
ever, these approaches disregard device-specific configurations in
frequency decision (L1). To this end, we design EarDVFS’s action
to limit the maximum processor frequency, implementing proactive
throttling from S1. By employing proactive throttling, as explained in

4
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

Section III-B, EarDVFS preserves the device-specific configurations
of the default governor while also exploiting the strengths of RL-
based DVFS approaches. Hence, we redefine policy π in Eq. (1) by
π′ that denotes the policy for proactive throttling, which limits upper
bound of the frequency range.

Additionally, EarDVFS enables efficient control of fine-grained
frequencies through its continuous action space. This is a signifi-
cant advancement over DQN-based approaches, which struggle with
large action spaces since their discrete action space requires output
networks to scale with all possible action combinations.

The advantages of our continuous action space become evident
when comparing with existing approaches. For instance, the limited
action space sizes (

∏M
i=1 ai, with M processors and actions a) of zTT

and GearDVFS—-3 and 37, respectively—-force zTT to adjust all
processor frequencies simultaneously and GearDVFS to build sepa-
rate networks for each processor. In contrast, EarDVFS’s action space
covers all available frequency levels 11, 14, 17, and 12 for the big,
mid, little CPU clusters and GPU, resulting in

∏M
i=1 ai = 31, 416.

Despite EarDVFS considers all possible action combinations, neither
its model size nor learning efficiency is compromised, which will be
discussed in Section VI.

State Design. The state space of EarDVFS consists of 30 param-
eters: (1) thermal management signals (battery temperature, wire-
less charging module temperature, cooling states), (2) performance
indicators (frame rates Q(t), total processor power consumption
P (t), PPW, reward), and (3) processor statuses (temperature, previous
action, operating frequency, utilization, power consumption for each
of big, mid, little CPU clusters and GPU).

Following S2, we particularly incorporate battery-related tempera-
tures, battery and wireless charging module temperatures as key in-
dicators of the thermal environment. These parameters provide stable
ambient condition signals, enabling better environmental adaptation
than using processor temperature alone. The cooling states comple-
ment this by offering additional insights on thermal management.

The performance indicators (Q(t), P (t), PPW) serve as indicators
for evaluating DVFS effectiveness, while reward value guiding the
learning process. The processor statuses are essential for under-
standing workload characteristics, per-processor load, and behavior.
The previous action and operating frequency allow the RL agent to
understand how its decisions impact the actual operating frequencies,
while utilization metrics help capture the workload characteristics [2].

Reward Design. The optimal values for α and β in Eq. (1)
inevitably vary across different systems, devices, applications, and
users. Existing methods employ extensive parameters such as target
temperature, frame rates, and utilization in their reward functions to
approximate these values. However, our experiments in Section III-B
revealed that the fixed use of those parameters is fundamentally
flawed (L3) as their optimal values vary depending on environmental
conditions.

Following S3, we design the reward function of EarDVFS to solve
the problem P1 in Eq. (1) based on understanding of EarDVFS’s
action. Instead of attempting to find new optimal values for α and
β, we design our reward function to enhance the default DVFS that
are already designed to be generally compatible across environments.
Our reward function considers two aspects: 1) maintaining acceptable
performance despite proactive throttling’s inherent restrictions (for
Q(t)), and 2) improving power efficiency by guiding proper processor
temperature (for P (t)). We propose the following reward function:

reward(t) = Q(t) ∗

[
γ +

(
M − C(t)

M

)λ
]

(2)

Hardware

big mid little GPU

Processors Sensors

Kernel

Cooling

Device

Thermal

Zone

CPU

Freq

/proc
Power

Rails

GPU

Freq

schedutil

(CPU)

quickstep

(GPU)

Governor

EarDVFS

State
Reward

Actor Critic

RL Agent

Application

sysfs sysfs

procfs

dumpsys

(a) Implementation overview. (b) Portable refrigerator.

Fig. 8. EarDVFS implementation details.

where C(t) is the total cooling states, M is a constant value
representing the maximum of the total cooling state, γ is a small
positive constant to prevent division by zero, and λ controls the
impact of the cooling state on the reward.1 The Q(t) increases reward
for higher QoE, ensuring that proactive throttling does not excessively
degrade performance. For power efficiency, we utilize cooling states
which are already calibrated for each device. The M − C(t) in the
numerator increases the reward as C(t) decreases, promoting lower
processor temperatures to improve power efficiency. Additionally, it
suppresses fluctuations in C(t), preventing frequency fluctuations that
could reduce power efficiency.

V. IMPLEMENTATION

We implement EarDVFS on Google Pixel 6 device (Android 12,
Kernel 5.10), featuring a Google Tensor GS101 with big/mid/little
CPU clusters (2.80/2.25/1.80 GHz max) and GPU (858 MHz max).
Fig. 8(a) shows an overview of EarDVFS implementation. EarDVFS
operates independently from applications and default governors.
Every 500 ms, EarDVFS updates its states and calculates the reward.
Based on this information, the actor and critic networks perform
learning, where the actor determines actions and the critic updates
value estimations. The actions set maximum processor frequencies
through sysfs [18], while default governors operate independently
within these frequency limits. We update the states of RL agent
through procfs [19] and sysfs (temperatures, utilization, cooling
states, frequencies), Android on-device power rails monitor [20]
(power), and dumpsys [21] SurfaceFlinger command (frame rates).

All experiments are conducted in a controlled environment inside
the portable refrigerator as shown in Fig. 8(b). The refrigerator
features both cooling and heating capabilities to maintain consistent
internal temperature. Note that governor behaviors in this closed envi-
ronment match those in open spaces. To ensure reproducible results,
we wait for the device to reach thermal equilibrium before each
experiment, initiating experiment only when the battery temperature
stabilizes at 20°C, 30°C, and 40°C for ambient temperatures of 10°C,
20°C, and 30°C, respectively.

EarDVFS is implemented with lightweight neural networks to min-
imize overhead. Actor and Critic networks utilize four and three fully-
connected layers respectively. EarDVFS’s RL agent runs on a desktop
(Python 3.10, PyTorch 1.12) equipped with an Intel i9-10900K CPU,
communicating with the phone via adb [22]. Due to the compact
network sizes, each action decision on the desktop takes less than
100 ms. We also implement EarDVFS on Pixel 6 with PyTorch
Mobile [23]2, which achieves less than 1 ms latency by eliminating

1We set γ = 1 and λ = 1/2 through experiments.
2Since PyTorch Mobile currently does not support on-device RL training

yet, we port the desktop-trained model to Pixel 6.

5
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

10°C 20°C 30°C
App 1

-50

-25

0

+25

+50
PP

W
 c

ha
ng

e
(%

) zTT
Gear
Ear

10°C 20°C 30°C
App 2

10°C 20°C 30°C
App 3

10°C 20°C 30°C
App 4

(a) Rate of change in average power efficiency (PPW).

10°C 20°C 30°C
App 1

-30

-20

-10

0

+10

Fr
am

e
ra

te
 c

ha
ng

e
(%

)

10°C 20°C 30°C
App 2

10°C 20°C 30°C
App 3

10°C 20°C 30°C
App 4

(b) Rate of change in average frame rates.

10°C 20°C 30°C
App 1

-20

0

+20

Pr
oc

es
so

r t
em

p.
 c

ha
ng

e
(%

)

10°C 20°C 30°C
App 2

10°C 20°C 30°C
App 3

10°C 20°C 30°C
App 4

(c) Rate of change in average processor temperature.

10°C 20°C 30°C
App 1

-10

0

+10

To
ta

l c
oo

l.
st

at
es

 d
iff

. (
#)

10°C 20°C 30°C
App 2

10°C 20°C 30°C
App 3

10°C 20°C 30°C
App 4

(d) Change of average total cooling state levels.

Fig. 9. Overall results corresponding to ambient temperature and application compared to the default governor.

wire communication overhead from adb. The implementation of
EarDVFS is available online3.

VI. EVALUATION

A. Evaluation Setup

We evaluate our proposed EarDVFS (denoted as Ear) against three
existing DVFS governors: the default governor (denoted as Deft) of
Pixel 6 (schedutil for CPU and quickstep for GPU), zTT [1],
and GearDVFS [2] (denoted as Gear). We utilize the open sources of
zTT and GearDVFS for their implementations. The evaluation uses
four applications representing different processor load patterns:
• App 1. WebGL Aquarium [8]: A CPU-intensive 3D rendering ap-

plication executed on Chrome (version 130.0.6998.39), configured
with 10,000 fish.

• App 2. Seascape Benchmark [16] (version 2.0.7): A GPU-intensive
application that benchmarks GPU performance.

• App 3. Genshin Impact [24] (version 5.5.0): A popular mobile
game with intensive CPU and GPU utilization, running at 30 fps
cap with medium graphics settings.

• App 4. Skype [25] (version 8.138.0.213): A video conferencing
application with a low processor load, sharing video during the
test to simulate a meeting.

Each evaluation runs for 30 minutes under controlled ambient temper-
atures (10°C, 20°C, and 30°C). The experiments begin with no prior
training to assess the adaptability of each governor across varying
environments.
B. Results

We evaluate the overall performance and run-time behavior of
the four governors in environments with fixed ambient temperature,
changing temperature conditions, and on different devices.

Overall Performance. To investigate environmental adaptability,
we test four governors across multiple environments. We evaluate
how newly proposed DVFS methods (zTT, GearDVFS, and EarD-
VFS) perform compared to the default governor which is designed for
general workloads, in terms of power efficiency (PPW), frame rates
(QoE), processor temperatures (across big, mid, little CPU clusters
and GPU), and total cooling states. Fig. 9 shows the average changes
in these metrics when running App 1–4 for 30 minutes at ambient
temperatures of 10°C, 20°C, and 30°C.

We first observe that EarDVFS consistently demonstrates improve-
ments across diverse scenarios. As shown in Figs. 9(a), (c), and (d),

3https://github.com/0jaehunny0/EarDVFS

it robustly enhances PPW, with an average improvement of 21.6%,
while reducing average processor temperatures and total cooling
states for all applications and under all ambient conditions. Moreover,
as shown in Fig. 9(b), EarDVFS maintains robust QoE, showing
average increases of 0.77% in frame rates and an average decrease
of only 0.90% where frame rate reductions occur. Remarkably,
EarDVFS achieves notable performance in App 3, delivering a 49.6%
enhancement in PPW with only a 1.46% decrease in frame rates
at 10°C. This is particularly impressive given App 3’s high power
consumption resulting from intensive CPU and GPU utilization.
These improvements come from reducing the average processor
temperature by 13% and alleviating frequency fluctuations.

On the other hand, zTT and GearDVFS exhibit inconsistent
performance across different environments. Both methods partially
succeed in thermal management, highlighting the advancement of
RL-based DVFS approaches. In particular, they perform well in
thermal management for App 1. At an ambient temperature of
10°C, zTT and GearDVFS reduce processor temperatures by 25.5%
and 18.5%, respectively. However, they struggle in other scenarios
because their target temperatures are not well-suited for different ap-
plication workloads. Furthermore, their performance in other metrics
is generally suboptimal.

zTT improves PPW in App 1 at 10°C and 20°C, and App 2 at
20°C. However, these gains come at the cost of the significant QoE
degradation. To meet its target temperature, zTT excessively reduces
QoE, even failing to maintain its target frame rates. This behavior
is undesirable and will be examined in detail alongside the run-time
behavior shortly. As for GearDVFS, it exhibits the weakest overall
performance, rarely outperforming the default governor in terms of
both PPW and QoE. This underperformance is attributed to its bad
target CPU and GPU utilization values, discussed in Section III-B.

Run-Time Behavior. We now examine the run-time behavior of
four DVFS methods to understand their performance in detail. We
analyze their behaviors by running App 1 at 20°C for 30 minutes,
measuring previously observed four overall performance metrics,
CPU big cluster frequency and utilization, and normalized loss and
reward values throughout learning. The results are shown in Fig. 10.

Figs. 10(a)–(d) and (g) displays that the big cluster frequency sig-
nificantly impacts overall performance metrics due to App 1’s CPU-
intensive workload. The default governor shows noticeable frequency
fluctuation after 600 seconds, yielding fluctuation in the overall
performance metrics. In contrast, EarDVFS successfully eliminates

6
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

0 500 1000 1500
Time (s)

20

30

PP
W

Deft zTT Gear Ear

(a) Power efficiency (PPW).

0 500 1000 1500
Time (s)

30

40

50

Q
oE

(b) Frame rates (fps).

0 500 1000 1500
Time (s)

60

80

Av
g.

 p
ro

c.
 te

m
p.

(c) Avg. processor temperature (°C).

0 500 1000 1500
Time (s)

0

20

C
oo

l.
st

at
es

.

(d) Total cooling states (#).

0 500 1000 1500
Time (s)

0.0

0.5

1.0

Lo
ss

zTT Gear Ear

(e) Normalized loss.

0 500 1000 1500
Time (s)

0.0

0.5

1.0

R
ew

ar
d

(f) Normalized reward.

0 500 1000 1500
Time (s)

1.5

2.0

2.5

Bi
g

fre
qu

en
cy

(g) Big cluster frequency (GHz).

0 500 1000 1500
Time (s)

85

90

95

Bi
g

ut
iliz

at
io

n

(h) Big cluster utilization (%).

Fig. 10. The 30-minute run-time behaviors of four governors while running App 1.

10°C 20°C 30°C
PPW change (%)

0

+20

+40

zTT
Gear
Ear

10°C 20°C 30°C
Frame rate change (%)

-20

0

+20

+40

10°C 20°C 30°C
Processor temp. chg. (%)

30

20

10

0

10°C 20°C 30°C
Total cool. states diff. (#)

8

6

4

2

0

Fig. 11. Overall performance results of four DVFS governors on Pixel 7.

these fluctuations as intended through our reward design and proactive
throttling mechanism. Notably, after 1,000 seconds when learning
and the impact of heat generation stabilizes, its frequency variations
are almost entirely eliminated, exhibiting the desirable frequency
behavior we discussed in Section III.

zTT initially maintains high frequency and QoE but subsequently
adjusts the big cluster frequency too low to meet its target tempera-
ture, as shown in Figs. 10(b), (c), and (g). This excessive frequency
reduction stems from the zTT’s small action space, resulting in
coarse-grained frequency choices. While this approach achieves high
PPW and its target temperature maintenance, yielding reward to
increase, it fails to keep its target frame rates. One might argue this
is due to an inadequate target temperature setting, but our additional
experiments reveal similar issues even with targeting 55°C and 75°C.

Fig. 10(h) illustrates that GearDVFS maintains its big cluster
utilization closest to 80%, which aligns with its target utilization.
However, this approach fails to demonstrate its effectiveness. While
GearDVFS maintains lower big cluster frequency compared to default
governor and EarDVFS, resulting in lower QoE, it fails to achieve
better PPW than either of them. This is likely due to its reliance on
a suboptimal fixed target utilization. As Pixel 6’s default governor
employs variable target utilization rather than a fixed 80%, simple
parameter adjustment is insufficient to achieve better performance.

To understand how RL-based DVFS methods learn, we compare
the normalized loss and reward of zTT, GearDVFS, and EarDVFS
(Critic), as shown in Figs. 10(e) and (f). With SAC, EarDVFS
efficiently learns and nearly converges within two minutes despite
its large action and state spaces.

Regarding reward, unlike zTT and GearDVFS, which increase
rewards over time, EarDVFS shows a reward decrease as the device
heats up. This coincides with frame rate reductions and increased
cooling states. This reward decrease reflects the challenging condi-
tions and aligns with the reward function of EarDVFS, which utilizes
the cooling state as a parameter.

Generalization Test. To verify that EarDVFS’s benefits generalize
across different devices, we conduct additional experiments on a

0 300 600 900 1200 1500 1800
Time (s)

25

30

35

Fr
am

e
ra

te
s

(fp
s)

20 °C 30 °C 10 °C
Deft zTT Gear Ear

Fig. 12. Frame rates for four DVFS methods during real-time ambient
temperature changes (20°C → 30°C → 10°C) while running App 2.

Google Pixel 7, which has different hardware characteristics from
the Pixel 6 used in our primary evaluations. We compare all four
governors (default, zTT, GearDVFS, and EarDVFS) running App 1
under three ambient temperatures (10°C, 20°C, and 30°C). Note that
hyperparameter values used in Pixel 6 experiments are maintained.

As shown in Fig. 11, the overall performance trends on Pixel 7 are
similar to those observed on Pixel 6. However, all three RL-based
approaches shows better performance at an ambient temperature of
30°C. This suggests that the default governor on Pixel 7 exhibits
poorer performance in high-temperature environments, while the RL-
based solutions effectively overcome these limitations.

Across all temperature conditions, EarDVFS achieves superior
power efficiency (PPW) and QoE (frame rates) compared to other
governors, with average improvements of 24.1% and 12.6% respec-
tively over the default one. These results demonstrate that EarDVFS
can be effectively generalized to devices with different processors
and internal designs without device-specific reconfiguration.

Real-Time Ambient Temperature Changes. To evaluate the
adaptability of DVFS governors, we conduct real-time ambient tem-
perature variation tests. We run App 2 for 30 minutes while changing
the ambient temperature every 10 minutes (20°C → 30°C → 10°C).
We focus on frame rates to determine whether the governors can
maintain performance despite these dynamic temperature changes.

As shown in Fig. 12, EarDVFS demonstrates superior adaptability
to changing thermal environments. When transitioning from 20°C to
30°C at 10 minutes, all other DVFS methods exhibit earlier frame rate
drops. In contrast, EarDVFS maintains more stable frame rates. These
results are attributable to EarDVFS’s better CPU frequency adjust-
ment. In GPU-intensive workloads, excessively high CPU frequencies
generate heat without improving QoE, and EarDVFS manages CPU
frequencies most effectively in this regard. Until the 600-second
mark, the default governor’s little core cluster frequency is 68.9%
higher than that of EarDVFS. This superior frequency management
by EarDVFS reduces heat generation from CPU, delaying throttling
as much as possible. After the transition from 30°C to 10°C at 20

7
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

Frame rates (fps)
35
40
45

Big freq. (Ghz)
1.5

2.0

Little freq. (Ghz)
1.2

1.4

Power efficiency (PPW)
17.5

20.0

Mid freq. (Ghz)
1.0

1.5

GPU freq. (Ghz)

0.4

0.6

Avg. proc. temp (°C)
70

80

Ear
Ablation1

Fig. 13. Comparison of performance and behavior between EarDVFS and
Ablation1 (without proactive throttling).

minutes, EarDVFS quickly adapts to the lower ambient temperature
environment, exhibiting the fastest QoE improvement. This is due to
both better thermal management during the 30°C period and faster
adaptation to the changed ambient temperature.
C. Ablation Study

To validate the effectiveness of our proposed design elements, we
conduct a comprehensive ablation study by systematically removing
key elements from EarDVFS. We analyze how each element—
proactive throttling (in Action), battery temperature (in State), and
cooling state (in Reward)—contributes to the DVFS behavior and
the overall performance. All experiments are conducted on a Pixel 6
device running App 1, which is the best scenario to discover processor
frequency/temperature fluctuation.

Action–Proactive Throttling. We first evaluate the impact of our
proactive throttling mechanism by creating a variant (Ablation1)
that directly adjusts processor frequencies instead of setting frequency
upper boundaries. As shown in Fig. 13, removing the proactive throt-
tling results in not only significant processor temperature/frequency
fluctuation but also the overall performance degradation.

Most notably, the frequency adjustment of Ablation1 produces
intense fluctuation in the big CPU cluster, demonstrating the critical
role of proactive throttling in suppressing fluctuations. The direct
frequency control fails to account for device-specific parameters
calibrated by vendors, leading to less efficient operation and average
frame rates and PPW decreased by 1.2% and 5.4%, respectively.
The performance differences indicate that our proactive throttling
approach (S1) effectively leverages device-specific configurations
while maintaining the benefits of the RL-based DVFS method.

State–Battery Temperature. We next examine the significance of
battery temperature monitoring by creating a variant (Ablation2)
that does not include battery temperature in state parameters.

As shown in Fig. 14, across different ambient temperature environ-
ments, Ablation2 consistently shows lower QoE and PPW compared

10°C 20°C 30°C
Power efficiency (PPW)

0

10

20

10°C 20°C 30°C
Frame rates (fps)

0

20

40

10°C 20°C 30°C
Avg. processor temp. (°C)

0

20

40

60

10°C 20°C 30°C
Total cool. states (#)

0

10

20
Ear
Ablation2

Fig. 14. Performance comparison between EarDVFS and Ablation2 (without
battery temperature) at different ambient temperatures.

0 300 600 900 1200 1500 1800
Time (s)

30

40

Fr
am

e
ra

te
s

(fp
s)

20 °C 30 °C 10 °C

Ear Ablation2

Fig. 15. Comparison of frame rates between EarDVFS and Ablation2 real-
time ambient temperature changes (20°C → 30°C → 10°C).

Frame rates (fps)

40
45

Big freq. (Ghz)
1.5

2.0

Little freq. (Ghz)
1.00

1.25

Power efficiency (PPW)

20.0

22.5

Mid freq. (Ghz)
1.00

1.25

GPU freq. (Ghz)
0.30

0.35

Avg. proc. temp (°C)

70
75

Ear
Ablation3

Fig. 16. Comparison of performance and behavior between EarDVFS and
Ablation3 (without cooling state).

to EarDVFS, while maintaining higher temperature and cooling
states. From these experiments, we observe that battery temperature
information enables the RL agent to responsively grasp environmental
context, impacting the initial learning phase. Fig. 15 reveals the most
significant limitation of Ablation2: its inability to adapt to environ-
mental changes. When ambient temperature changes from 20°C to
30°C and then to 10°C, Ablation2 shows delayed and inadequate
responses to these transitions. The average frame rates of Ablation2
are 8.3% lower than EarDVFS despite having nearly identical PPW,
validating our approach of incorporating battery temperature (S2) as
a key state component for sensing environmental conditions, enabling
superior adaptation to variable thermal environments.

Reward–Cooling State. Finally, we evaluate the impact of cooling
state in our reward function by implementing a variant (Ablation3)
that excludes cooling state from the reward calculation. The reward
function of Ablation3 is simplified to:

reward(t) = Q(t) (3)

As shown in Fig. 16, Ablation3 exhibits notable fluctuations in
processor temperature and frequencies. In EarDVFS, the cooling state
value in the reward function helps prevent increases in cooling states,
thereby suppressing fluctuations. Without this element, Ablation3’s
cooling states fluctuate, causing processor frequencies and tempera-
tures to fluctuate as well—an undesirable behavior as explained in
Section III. However, the intensity of these fluctuations is lower than
in Ablation1, suggesting that proactive throttling contributes more
significantly to suppressing fluctuations than the cooling state in the
reward function. Nevertheless, these results confirm that a reward
function just omitting environment-dependent parameters is overly
simplistic, while our environment-robust reward design (S3), which
incorporates the cooling state, enables better adaptation across diverse
environments and reduces fluctuations.

VII. CONCLUSION

This paper reveals critical limitations in current RL-based DVFS
methods and presents EarDVFS, an environment-adaptable RL-based
DVFS solution featuring proactive throttling, battery temperature-
based sensing, and environment-robust design. Our extensive eval-
uation across diverse devices, ambient temperatures and application
types demonstrates that EarDVFS achieves consistent power effi-
ciency improvements of up to 49.6% while maintaining robust per-
formance, demonstrating its ability to adapt to diverse environments.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation
of Korea (NRF) through a grant funded by the Korea govern-
ment (MSIT) (RS-2024-00438248, RS-2024-00347516, RS-2025-
00522352) and the Ministry of Education (RS-2024-00451982).
It was also supported by IITP (RS-2020-II201819, RS-2025-
02305705, RS-2023-00232728), TIPA (RS-2024-00447529), and K-
Startup (20144069).

8
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Kim, K. Bin, S. Ha, K. Lee, and S. Chong, “Ztt: learning-based dvfs
with zero thermal throttling for mobile devices,” in Proceedings of the
19th Annual International Conference on Mobile Systems, Applications,
and Services, 2021, pp. 41–53.

[2] C. Lin, K. Wang, Z. Li, and Y. Pu, “A workload-aware dvfs robust to
concurrent tasks for mobile devices,” in Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking, 2023,
pp. 1–16.

[3] Y. Gong, Y. Wu, Z. Zhan, P. Zhao, L. Liu, C. Wu, X. Tang, and
Y. Wang, “Lotus: learning-based online thermal and latency variation
management for two-stage detectors on edge devices,” in Proceedings
of the 61st ACM/IEEE Design Automation Conference, ser. DAC ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3649329.3657310

[4] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] T. L. K. D. Community, “Schedutil The Linux Kernel documentation —
docs.kernel.org,” https://docs.kernel.org/scheduler/schedutil.html.

[7] C. S. Pabla, “Completely fair scheduler,” Linux Journal, vol. 2009, no.
184, p. 4, 2009.

[8] Greggman and H. Engines, “WebGL Aquarium — webglsamples.org,”
https://webglsamples.org/aquarium/aquarium.html.

[9] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power,” computer, vol. 36, no. 12, pp. 68–75, 2003.

[10] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang,
“Accurate modeling of the delay and energy overhead of dynamic voltage
and frequency scaling in modern microprocessors,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 5, pp. 695–708, 2013.

[11] D. Mukherjee, S. Hachem, J. Bao, C. Madsen, T. Ma, S. Ghose,
and G. Agha, “Crave: Analyzing cross-resource interaction to improve
energy efficiency in systems-on-chip,” in Proceedings of the Twentieth
European Conference on Computer Systems, 2025, pp. 59–75.

[12] S. Isuwa, S. Dey, A. P. Ortega, A. K. Singh, B. M. Al-Hashimi, and
G. V. Merrett, “Quarem: maximising qoe through adaptive resource man-
agement in mobile mpsoc platforms,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 21, no. 4, pp. 1–29, 2022.

[13] Google, “Use ftrace — Android Open Source Project —
source.android.com,” https://source.android.com/docs/core/tests/debug/
ftrace.

[14] ——, “kernel/sched/cpufreq schedutil.c - kernel/gs - Git at Google —
android.googlesource.com,” https://android.googlesource.com/kernel/
gs/+/refs/heads/android-gs-raviole-5.10-android12-qpr3/kernel/sched/
cpufreq schedutil.c.

[15] ——, “Develop kernel code for GKI — Android Open Source
Project — source.android.com,” https://source.android.com/docs/core/
architecture/kernel/kernel-code.

[16] NatureApps, “Seascape Benchmark - GPU test - Apps on Google Play
— play.google.com,” https://play.google.com/store/apps/details?id=com.
nature.seascape&pcampaignid=web share.

[17] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta,
and J. G. Araújo, “Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms,” Journal of Machine Learning
Research, vol. 23, no. 274, pp. 1–18, 2022. [Online]. Available:
http://jmlr.org/papers/v23/21-1342.html

[18] P. Mochel, “The sysfs filesystem,” in Linux Symposium, vol. 1. The
Linux Foundation San Francisco, CA, USA, 2005, pp. 313–326.

[19] E. Mouw, “Linux kernel procfs guide,” Delft University of Technology,
2001.

[20] Google, “Power Profiler — Android Studio — Android Developers
— developer.android.com,” https://developer.android.com/studio/profile/
power-profiler.

[21] ——, “dumpsys — Android Studio — Android Developers —
developer.android.com,” https://developer.android.com/tools/dumpsys.

[22] ——, “Android Debug Bridge (adb) — Android Studio — Android
Developers — developer.android.com,” https://developer.android.com/
tools/adb.

[23] T. L. Foundation, “Home — pytorch.org,” https://pytorch.org/mobile/
home/.

[24] miHoYo Network Technology Co. Ltd., “Genshin Impact - Step into a
Vast Magical World for Adventure — genshin.hoyoverse.com,” https:
//genshin.hoyoverse.com/.

[25] Microsoft, “Skype,” https://www.skype.com/.

9
Authorized licensed use limited to: Yonsei Univ. Downloaded on November 29,2025 at 05:26:26 UTC from IEEE Xplore. Restrictions apply.

