SUPPLEMENT OF “BEYOND IMPLICIT-DEADLINE
OPTIMALITY: A MULTIPROCESSOR SCHEDULING
FRAMEWORK FOR CONSTRAINED-DEADLINE
TASKS”

Hyeongboo Baek®, Hoon Sung Chwa? and Jinkyu Lee’

! Department of Computer Science and Engineering, Sungkyunkwan University
(SKKU), Republic of Korea.

2Department of Electrical Engineering and Computer Science, The University of
Michigan, U.S.A.

A. Execution-time bound under TL(7T, Fluid, Fluid-FP)

In the following lemma, we prove that the amount of
execution of jobs of 77158 in an interval of length ¢ is upper-
bounded by RC!ss . LC'aSS(f) even if 7C1SS executes with a
rate lower than ROSS (je. executing up to RE1ESS),

Lemma 8: For given £, the amount of execution of jobs of
7C1888 in an interval of length ¢ is upper-bounded by RE'3S .
LEBS(7) if a job of 7718 executes with a rate up to RC'alss
(which coincides with the scheduling policy of TL(r, FIUId

Fluid-FP)).

Proof: Suppose that there exist job(s) of 7; executing
with a rate lower than R¥3S in an interval of length £, and the
amount of execution of _]ObS of 7718 in the interval is larger
than RC1SS . 101888 (/) We focus on the base situation where
the Jobs of TCIaSS execute with exactly R3S rate shown in
Fig. 5, resultmg in RY18ss . 1,01858 (1) amount of execution in an
interval of length /. Focusmg on jobs of 7; in the interval of
interest (e.g., three jobs in Fig. 5), we will show that if (i) the
carliest-released job, (ii) the latest-released job, and (iii) other
jobs (i.e., body jobs) in the interval execute with less than R?;
rate, we need at least £ interval length for jobs of 7C!3S in the
interval to have RS . [C135S(¢) amount of execution, which
contradicts the supposition.

Class

(Case i and ii) If a job of TCIaSS executes with a rate lower

than RS, the execution length of the job increases compared
with exactly RCBSS rate. Therefore, in order to have RY13ss .
LS8 () amount of execution of jobs of 78S in the 1nterval
the interval should be extended fo the left (Case 1) and right
(Case ii) directions compared to the base situation.

(Case iii) Since body jobs fully execute anyway regardless
of their execution rates, we need the same interval as the base
situation, in order to have R'255. 16138 () amount of execution
of jobs of 7C!3S in the interval.

In the three cases, in order to have R3S LC13SS (1) amount
of execution of jobs of 7C15S in the mterval the interval length
should be larger than or equal to that of the base situation. This
contradicts the supposition. |

B. Property of NC-ORA

We prove that binary search in Line 11 of Algo. 3 can be
done without backtracking in the following lemma.

Lemma 9: Consider two execution rate assignments for
LO RLO =A/Cy dnd RLO = A'/Cy, where A > A’. Then,
1t Lemma 5 deems T, qchedulable (i) with given R and

the execution rate and task priority assignment by Lemma 6,
i
the same holds (ii) for 750 with R{C".

Proof: We show that if Egs. (5) and (6) hold for (i),
those also hold for (ii). The execution rate and task priority
assignment in Lemma 6 guarantees that Eq. (5) is always
satisfied for Tko (regardless of RLO) since the left term of
the LHS of Eq. (5) is O, and the rrght term of that cannot be
larger then m - (Dy, — Xk) due to gy (T = m. When it
comes to Eq. (6), the reduction from Rko to R
the RHS of Eq. (6) exactly by RLO RLO whlle it increases
the LHS of Eq. (6) by less than R,';O R meamng the same
amount of execution is extracted from 7' O and added to T,
but such execution is performed in 7" w1th an execution rate
no larger than that in 75 since R < RO holds for CH' =
C’LO Thus the lemma holds.]

increases

C. Example of NC-ORA

We describe how NC-ORA Algo. 3 works with the follow-
ing example.

Example 4: Recall the same task set as Example 3. After
Lines 1-8 in Algo. 3 are executed, for given C’k and C’k of
each task 7, the first execution rate and priority assignment
illustrated in Lemma 6 constructs the followings:

for 1 Lo = {7'277'3,77'4,7'{'"(T1=107 C'{”:l.87D1=6)}, Lo =
{TLO(ro 1.2,6)}.

for 7o s = L, T, e, (12,2, 5), 7RO = {759(12, 1, 5)).

for T3 s = {7y, oy T, T 1(12,2,5)}, 710 = {73 L0(12,1,5)}.

for 74 s = {1, 7o, 13, 741(15, 3,10)), 710 = {r1 £0(15,2,10)}.

For 74, it is deemed schedulable by Lemma 5 with above
execution rate and priority assignment, indicating that the
execution rate of 74! = (15,3, 10) is the minimum one to avoid
deadline miss for 74. On the other hdnd for 7, 7o and 73,
NC-ORA cannot find any rate of C that makes Tko deemed
schedulable using binary search (Lmes 11 12), meaning whole
amount of C}, should be assigned to 7M. Since the summation
of minimum execution rates that should be assigned to 7'
is 3/643/5+3/5+3/10 = 2, the example task set 7 satisfies the
necessary condition in Lemma 7.

D. Task set generation method

We randomly generate 100,000 constrained-deadline task
sets for each m € {2,4, 8,16}, based on a technique proposed
in [27] used in many studies, e.g., [13,23]. For task set
generation, we consider two input parameters: the number
of processor (m = 4 or 8) and task utilization parameter.
For a task 7;, T; is uniformly chosen in [1, 1000], and C;
is determined by a bimodal and exponential task utilization
parameter. For a given bimodal parameter p, a value for C;/T;
is uniformly chosen in [0, 0.5) with probability p, and for a
given exponential parameter 1/, that is chosen according to
the exponential distribution whose probability density function
is A-exp(—A\-z), where each parameter can be a value of 0.1,
0.3, 0.5, 0.7 or 0.9. Then, D; is uniformly chosen in (C;,T;)
as we consider constrained deadline task model.

For each task utilization, we conduct the following steps
until 10,000 task sets are generated.

1) We generate a task set containing m + 1 tasks.

2) We check whether the generated task set passes a
necessary feasibility condition [28].

3) If it passes the necessary feasibility condition, we
include the task for evaluation. Then, we generate
a new task set by adding a new task into the old task
set and return to Step 2). Otherwise, we discard the
task and return to Step 1).

We create 10,000 task sets for each task utilization model
(bimodal or exponential model with a given parameter value
chosen among 0.1, 0.3, 0.5, 0.7 and 0.9), in total 100,000 task
sets for a given m.

