
Controlling Preemption for Better Schedulability in Multi-Core Systems

Jinkyu Lee and Kang G. Shin
Dept. of Electrical Engineering and Computer Science, The University of Michigan, U.S.A.

{jinkyul, kgshin}@eecs.umich.edu

Abstract—Interest in real-time multiprocessor scheduling has
been rekindled as multi-core chips are increasingly used for
embedded real-time systems. While tasks may be preemptive
or non-preemptive (due to their transactional operations),
deadline guarantees are usually made only for those task sets
in each of which all tasks are preemptive or non-preemptive,
not a mixture thereof, i.e., all or nothing. In this paper, we
develop a schedulability analysis framework that guarantees
the timing requirements of a given task set in which a task
can be either preemptive or non-preemptive. As an example,
we apply this framework to the prioritization policy of EDF
(Earliest Deadline First), yielding schedulability tests of mpn-
EDF (Mixed Preemptive/Non-preemptive EDF), which is a
generalization of both fp-EDF (fully-preemptive EDF) and
np-EDF (non-preemptive EDF). In addition to their deadline
guarantees for any task set that is composed of a mixture
of preemptive and non-preemptive tasks, the tests outperform
the existing schedulability tests of np-EDF (a special case
of mpn-EDF) by up to 109.1%. Using these tests, we also
improve schedulability by disallowing preemptions of some
preemptive tasks. For this, we develop an algorithm that
optimally disallows preemption of a preemptive task under
a certain assumption, and demonstrate via simulation that the
algorithm discovers up to 30.9% additional task sets that are
schedulable with the proposed scheduling scheme, but not with
fp-EDF or np-EDF.

I. INTRODUCTION

With the increasing use of multi-core chips for embed-
ded real-time applications due to their potential for high
performance at low cost, there have been numerous real-
time scheduling algorithms proposed for multi-core sys-
tems, which can be characterized by their prioritization and
preemption policies. The prioritization policy determines
each task’s priority, such as EDF (Earliest Deadline First)
and FP (Fixed Priority) [1], while the preemption policy
determines the degree of restriction to preemptions, such
as the non-preemptive policy that prohibits the preemption
of an executing task, and the fully-preemptive policy that
always allows a higher-priority task to preempt a lower-
priority executing task. Despite the significant advance in
scheduling theory to date, there still exists much room
to improve real-time multi-core scheduling. For example,
no exact feasibility condition has been identified for both
fully-preemptive and non-preemptive scheduling of general

The work reported in this paper was supported in part by the NSF under
grants CNS-0930813 and CNS-113820.

The work reported in this paper was also supported in part by National
Research Foundation of Korea Grant funded by the Korean Government
(Ministry of Education, Science and Technology) [NRF-2011-357-D00186].

periodic tasks. Besides, most schedulability analyses have
focused on fully-preemptive scheduling.
While some tasks can be preempted at any time during

their execution, other tasks should not be preempted due
to their transactional operations, e.g., interrupts. Under the
fully-preemptive (non-preemptive) policy, all tasks in a set
are preemptive (non-preemptive), i.e., it is usually all or
nothing. In contrast, we treat the preemption requirement
of each task as a variable; it is safe to execute a given
preemptive task as if it were non-preemptive, but the con-
verse is not. In order to support task sets in each of which
tasks have different preemption requirements, or in order to
improve schedulability by using the preemption requirement
as a control knob, more general preemption policies have
been developed for real-time uniprocessor scheduling (see
[2] for a survey). However, such general preemption policies
have not been explored for real-time multi-core scheduling.
In this paper, we consider such general preemption poli-

cies, and focus on the following questions in real-time multi-
core scheduling.
Q1. How can we guarantee the timing requirements of a

given set of preemptive and non-preemptive tasks?
Q2. Can we improve schedulability by executing some

preemptive tasks non-preemptively, but not conversely?
If so, how can we find the optimal “assignment” of non-
preemptiveness to each preemptive task?

We first define the MPN (Mixed Preemptive/Non-
preemptive) policy, under which each task can be either
preemptive or non-preemptive. This policy is a generaliza-
tion of both fully-preemptive and non-preemptive policies.
To address Q1, we choose a popular schedulability analysis
[3] designed for scheduling algorithms under the fully-
preemptive policy; by analyzing how the execution of a
given preemptive task affects that of the other preemptive
tasks under a given prioritization (e.g., EDF or FP) policy,
we compute how long it takes for a given preemptive task
to finish its execution (called the task response time). How-
ever, it is challenging to extend this analysis to scheduling
algorithms that employ the MPN policy because we need
to (i) develop a response time analysis framework for both
preemptive and non-preemptive tasks, and (ii) analyze the
effect of the execution of a preemptive/non-preemptive task
on that of other preemptive/non-preemptive tasks (a total of
four cases).
While the calculation of the response time of a preemptive

task requires knowing when the last unit of its execution is

2012 IEEE 33rd Real-Time Systems Symposium

1052-8725/12 $26.00 © 2012 IEEE

DOI 10.1109/RTSS.2012.56

29

finished, that of a non-preemptive task only needs to know
when the first unit of its execution starts; once it starts,
the remaining execution will run to completion without
any interruption. Using these properties, we address (i),
developing a schedulability analysis framework for any
scheduling algorithm that employs the MPN policy. Then,
since (ii) depends on the prioritization policy, we choose a
target algorithm, mpn-EDF, which adopts MPN and EDF as
its preemption and prioritization policies, respectively. Note
that like the MPN policy, mpn-EDF is also a generalization
of both fp-EDF (fully-preemptive EDF) and np-EDF (non-
preemptive EDF). By carefully analyzing the four cases of
(ii) under mpn-EDF, and incorporating them into (i), we
finally develop schedulability tests of mpn-EDF (simple and
improved tests). The proposed mpn-EDF schedulability tests
not only guarantee the timing requirements of a given task
set that consists of preemptive and non-preemptive tasks,
but also outperform the existing schedulability tests of np-
EDF [4, 5] when they deal with np-EDF, a special case
of mpn-EDF. Our simulation results show an up-to-109.1%
improvement.
As to Q2, we first investigate how (ii) varies if a given

preemptive task is not allowed to be preempted. Based on
the results of this investigation, we develop an algorithm that
“optimally” disallows preemption of each preemptive task,
under the simple schedulability test of mpn-EDF. We then
demonstrate via simulation that disallowing preemption of
preemptive tasks is also effective even under the improved
schedulability test in that it finds up to 30.9% additional task
sets which are schedulable with neither np-EDF nor fp-EDF.
In summary, this paper makes the following contributions:
• Introduction of a new preemption policy, MPN, that

handles tasks with different preemption requirements,
which is, to the best of our knowledge, the first attempt
in the area of real-time multi-core scheduling;

• Development of a schedulability analysis framework for
any scheduling algorithm that employs the MPN policy,
and derivation of a schedulability analysis of mpn-EDF;

• Demonstration of the superior average schedulability of
our analysis of np-EDF (a special case of mpn-EDF)
over existing analysis techniques; and

• Development of an algorithm by using the schedula-
bility analysis of mpn-EDF to disallow preemption of
preemptive tasks, and demonstration of its schedulabil-
ity improvement over np-EDF and fp-EDF.

The remainder of the paper is organized as follows. In
Section II, we present our system model, and recapitulate
a schedulability analysis for fully-preemptive algorithms in
[3]. In Section III, we develop a new schedulability anal-
ysis framework for any scheduling algorithm that employs
the MPN policy, and perform a schedulability analysis of
mpn-EDF. Section IV presents an algorithm of disallowing
preemption of preemptive tasks for better schedulability.
In Section V, we evaluate our schedulability analysis of
mpn-EDF and the algorithm of disallowing preemption, via

simulation. We summarize the related work in Section VI
and conclude the paper in Section VII.

II. BACKGROUND

In this section, we first introduce the system model,
assumptions and notations to be used throughout the pa-
per. Then, we scrutinize an existing schedulability analysis
technique for fully-preemptive scheduling algorithms in [3],
which will be a basis for our schedulability analysis frame-
work for scheduling algorithms with the MPN preemption
policy to be developed in Section III.

A. System model, assumptions and notations

Our focus in this paper is placed on a sporadic task
model [6] in which a task τi ∈ Φ is modeled as (Ti, Ci, Di),
where Ti is the minimum separation between two successive
invocations, Ci the worst-case execution time, and Di the
relative deadline of τi. Our discussion is confined to implicit
(Ci ≤ Di = Ti) and constrained (Ci ≤ Di ≤ Ti) deadline
task sets. A task τi invokes a series of jobs, each separated
from its predecessor/successor by at least Ti time units.
We assume a quantum-based time and let the length of a
quantum be one time unit, without loss of generality. All
task parameters are specified in multiples of the quantum or
time unit.
For each τi ∈ T , we introduce a new additional parameter

Yi, indicating whether τi is preemptive (Yi = 1) or non-
preemptive (Yi = 0). That is, if Yi = 1 (Yi = 0), jobs of τi

can (cannot) be preempted by any other higher-priority job
at any time.
The system is assumed to be built with multi-core chips,

each of which consists of m identical cores. We also focus
on global work-conserving algorithms, i.e., a job can be
executed on any core, and a core cannot be left idle if there is
an unfinished ready job. For convenience, we will henceforth
use the term “scheduling algorithm” to mean “global work-
conserving scheduling algorithm.” We also assume that a job
cannot be executed in parallel.
We will use the terms carry-in, body, and carry-out jobs

in an interval of interest, defined as follows.

• A carry-in job is released before the interval, but its
deadline is within the interval;

• A body job has its release time and deadline within the
interval; and

• A carry-out job is released within the interval, but its
deadline is after the interval.

B. An existing schedulability analysis for fully-preemptive
scheduling algorithms

As the basis for a schedulability analysis of MPN schedul-
ing algorithms, we choose a response-time based schedu-
lability analysis technique for fully-preemptive scheduling
algorithms [3] due to its applicability to various prioritization
policies (e.g., fp-EDF, fp-FP and potentially more) and
schedulability performance (e.g., the authors [7] showed the

30

test of fp-EDF [3] to be one of the best with respect to
average schedulability).
The technique in [3] uses the notion of interference [8].

The interference to τk in an interval of [a, b) (denoted by
Ik(a, b)) represents the cumulative length of all intervals in
[a, b) such that a job of τk is ready to execute but cannot
be executed due to other higher-priority ready jobs. Also,
the interference of a task τi to another task τk in an interval
of [a, b) (denoted by Ik←i(a, b)) represents the cumulative
length of all intervals in [a, b) such that a job of τi executes
but a job of τk cannot, although it is ready for execution.
Since a job of τk does not execute in a given time slot only
when m other jobs execute, the following equation holds
under any global work-conserving algorithm [8]:

Ik(a, b) =

P
τi∈Φ−{τk}

Ik←i(a, b)

m
. (1)

Then, a property regarding Ik(a, b) and Ik←i(a, b) is
derived, which is useful for reducing the pessimism in a
schedulability analysis.

Lemma 1 (Lemma 4 in [8]): The following inequality
holds for any global work-conserving algorithm:

Ik(a, b) ≥ x ⇐⇒
X

τi∈Φ−{τk}

min
“
Ik←i(a, b), x

”
≥ m · x.

(2)

Proof: The proof can be found from [8], but is outlined
here for completeness. A ready, unfinished job of τk does
not execute in a given time slot when jobs of m other
tasks execute (i.e., interfere with the job of τk) in the
slot. Therefore, if we focus on the cumulative length of x
over all intervals in [a, b) such that any job of τk is ready
to execute but it cannot, each task’s interference with τk

is upper-bounded by x, and the sum of all other tasks’
interferences with τk should be no less than m · x. The
opposite direction can be proved by using the definition of
Ik(a, b) and Ik←i(a, b).

Using the concept of interference and Lemma 1, the
technique in [3] calculates the maximum duration between
the release and the completion of any job of task τk, i.e.,
called the response time of τk. We do this by computing the
maximum amount of τi’s interference with τk in an interval
of length l starting from the release of any job of τk, which
is denoted by I∗k←i(l), and formally expressed as:

I
∗
k←i(l) � max

t| the release time of any job of τk

Ik←i(t, t + l). (3)

We define I∗k←i(l) only for 0 ≤ l ≤ Dk, since we are
interested in meeting the timing requirements.
If the sum of the execution time of τk and the maximum

interference to τk in an interval of length l starting from
the release of any job of τk is no longer than l, any
job of τk finishes its execution within l time units after
its release. I∗k←i(l) is used to express this, leading to the
following schedulability test for fully-preemptive scheduling
algorithms.

Lemma 2 (Theorem 6 in [3]): When a task set Φ is
scheduled by a fully-preemptive algorithm, an upper-bound
of the response time of τk ∈ Φ is Rk = Rx

k such that
Rx+1

k ≤ Rx
k holds in the following formula, starting from

R0
k = Ck:

R
x+1

k
← Ck +

—
1

m

X
τi∈Φ−{τk}

min
“
I
∗
k←i(R

x

k), Rx

k − Ck + 1
”�

.

(4)

Then, if Rk ≤ Dk holds for all τk ∈ Φ, Φ is schedulable
by the fully-preemptive algorithm.
Note that the iteration of Eq. (4) for τk halts if Rx

k > Dk,
meaning that τk is deemed unschedulable.

Proof: The proof is given in [3], and the proof structure
is the same as that of Eq. (13) in our new schedulability test
of MPN scheduling algorithms to be presented in Theorem 1
in Section III.

Note that Eq. (4) is a response time analysis framework for
a preemptive task since all tasks are preemptive under any
fully-preemptive scheduling algorithm.
While the schedulability analysis in Lemma 2 can be ap-

plied to any preemptive (global work-conserving) scheduling
algorithm, the main difficulty is to calculate I∗k←i(l) for a
given scheduling algorithm. Calculating the exact I∗k←i(l)
is generally intractable, and hence, the upper-bounds of
I∗k←i(l) are computed. Note that when the upper-bounds
are calculated, we assume that there is no deadline miss.
This is because the schedulability test in [3] aims to find
necessary conditions for the “first” deadline miss, as most
tests do. Therefore, we will assume this for derivation of all
upper-bounds of I∗k←i(l) in the rest of the paper.
The schedulability test in [3] calculates two upper-bounds

of I∗k←i(l): (i) the one for any scheduling algorithm (regard-
less of preemptive/non-preemptive scheduling) and (ii) the
other for specific preemptive scheduling algorithms (e.g., fp-
EDF and fp-FP). To develop (i), the test identifies a situation
in which the amount of execution of jobs of given τi in a
given interval is maximized (in Theorem 4 in [3]). Here,
we use the notion of task τi’s slack (denoted by Si) that
represents the minimum interval length between the finishing
time and the deadline of any job of τi; in other words, any
job of τi finishes its execution at least Si time units ahead
of its deadline. We will describe how to calculate Si later
in this section.
Fig. 1 shows an execution pattern of τi’s jobs that max-

imizes the amount of execution in an interval starting at t.
The first job of τi is a carry-in job, and starts its execution
at t and ends at t + Ci. Here t + Ci −Di + Si is the job’s
release time, i.e., the first job starts and finishes its execution
as late as possible. Jobs of τi are then released and scheduled
as soon as possible. In this case, the number of jobs fully
executed in [t, t + l) is calculated as:

Ni(l) =

—
l + Di − Si − Ci

Ti

�
. (5)

31

��������	
����	��
��� ������
���

��� ��� ��� ���

������

��

��� ���

�	�����	��
�

������

Figure 1. An execution pattern of jobs of τi that maximizes the amount
of execution of τi’s jobs in an interval starting at t

��������	
����	��
��� ������
���

���
���

���

������
���

���

Figure 2. An execution pattern of τi’s jobs that maximizes the amount
of execution of higher-priority jobs of τi than a job of τk in an interval
between the release and the deadline of the τk’s job under fp-EDF

Then, the maximum amount of execution of jobs of τi in
[t, t + l) is calculated as (Eq. (8) in [3]):

Wi(l) = Ni(l) · Ci + min
“
Ci, l + Di − Si − Ci −Ni(l) · Ti

”
.

(6)

While it is guaranteed under any scheduling algorithm
(regardless of preemptive/non-preemptive) that I∗k←i(l) ≤
Wi(l) for any τk, τi and l, we can obtain another upper-
bound of I∗k←i(l) if we consider the property of a given
scheduling algorithm.
Under fp-EDF, earlier-deadline jobs have higher prior-

ity (under EDF), and a job can be interfered only by
higher-priority jobs (under the fully-preemptive policy). The
amount of execution of a preemptive task τi’s jobs with
higher priority than a task τk’s job is maximized when the
deadlines of a job of τi and the τk’s job are aligned as shown
in Fig. 2. The number of body jobs of τi in an interval
between the release time and the deadline of the τk’s job is
then calculated as

Bk←i =

—
Dk + Ti −Di

Ti

�
. (7)

Then, the maximum amount of execution of higher-
priority jobs of a preemptive task τi than a job of a task
τk in an interval between the release and the deadline of the
τk’s job is calculated as (Eq. (9) in [3]):

Ek←i = Bk←i · Ci + min
“
Ci, max

`
0, Dk −Bk←i · Ti − Si

´”
.

(8)

Finally, I∗k←i(l) under fp-EDF is upper-bounded by
min

(
Wi(l), Ek←i

)
for any (τi, τk) pair and 0 ≤ l ≤ Dk, so

the following inequality holds under fp-EDF, for all τk ∈ Φ
and 0 ≤ l ≤ Dk:

X
τi∈Φ−{τk}

min
“
I
∗
k←i(l), l − Ck + 1

”
in Eq. (4)

≤
X

τi∈Φ−{τk}

min
`
Wi(l), Ek←i, l −Ck + 1

´
(9)

Then, to check the schedulability of a given task set Φ
under fp-EDF, we use Lemma 2 with the LHS of Eq. (9)
replaced with the RHS. However, one may wonder how
to apply the slack Si when we compute Wi(l) and Ek←i.
Depending on whether the slacks are utilized or not, we
have two schedulability tests. The first one is to apply
Lemma 2 with the upper-bounds in Eq. (9) only once with
Si = 0, ∀τi ∈ Φ. For a tighter but higher time-complexity
analysis, we briefly summarize Section 4.3 of [3]. The basic
idea is to repeat the application of Lemma 2 with the upper-
bounds in Eq. (9); initially, Si is set to 0 for all τi ∈ Φ,
and at each iteration Si is updated by Di − Ri for all
τi|Ri ≤ Di ∈ Φ. The iteration halts when there is no more
update for any Si of τi ∈ Φ. We call the two schedulability
tests simple and improved tests, and they correspond to
Theorem 6 with Eqs. (4) and (5), and Theorem 6 with
Eqs. (8) and (9) in [3], respectively.

III. MPN-EDF SCHEDULING ALGORITHM AND ITS
SCHEDULABILITY ANALYSIS

In this section, we first define the MPN preemption policy,
in which each task can be either (artificially) preemptive
or non-preemptive, and describe mpn-EDF, in which the
MPN policy is incorporated into EDF. Then, we develop a
schedulability analysis framework for any MPN scheduling
algorithm, and perform a schedulability analysis of mpn-
EDF.

A. MPN policy and mpn-EDF scheduling algorithm

We consider a preemption policy under which preemption
decisions are made based on a task parameter Yi of τi. That
is, if Yi = 1 (Yi = 0), a job of τi can (cannot) be preempted
by any other higher-priority job during its execution. We call
this the mixed preemptive/non-preemptive (MPN) policy.
Let mpn-EDF denote a scheduling algorithm that adopts

MPN and EDF as its preemption and prioritization policies,
respectively. Algorithm 1 provides a formal description of
mpn-EDF on a multi-core platform. Note that the scheduling
overhead of mpn-EDF is not significant in that most steps
in Algorithm 1 are also required for fp-EDF.
Then, it is trivial that the MPN policy and mpn-EDF are

generalizations of non-preemptive and preemptive policies,
and np-EDF and fp-EDF, respectively, as stated in the
following lemma.

Lemma 3: The MPN policy subsumes the non-preemptive
and preemptive policies, while the mpn-EDF scheduling
algorithm subsumes np-EDF and fp-EDF.

Proof: The proof is straightforward. The non-
preemptive (preemptive) policy is equivalent to the MPN
policy with Yi = 0 (Yi = 1) for all τi ∈ Φ, and np-EDF

32

Algorithm 1 mpn-EDF scheduling algorithm
Job release: The following steps are performed whenever a job
Jnew of τi is released at t:
1: Set the absolute deadline of Jnew : dnew ← t + Di.
2: if there is an idle core then
3: Start to execute Jnew .
4: else
5: Let Jcurr denote a currently executing job of a preemptive

task τk (i.e., Yk = 1), which has the latest deadline dcurr.
6: if dcurr ≤ dnew or all currently executing jobs are invoked

by non-preemptive tasks (i.e., Yk = 0) then
7: Put Jnew into the wait queue.
8: else
9: Stop executing Jcurr, put Jcurr into the wait queue, and

start to execute Jnew .
10: end if
11: end if

Job completion: The following step is performed when-
ever a currently executing job Jcurr finishes its execu-
tion,
1: Start to execute a job with the earliest deadline in the wait

queue.

(fp-EDF) is equivalent to mpn-EDF with Yi = 0 (Yi = 1)
for all τi ∈ Φ.

B. Schedulability analysis of mpn-EDF

In Section II-B, a schedulability analysis of fp-
EDF has been developed by addressing the following
framework/upper-bound.

F1. A response time analysis for a preemptive task (i.e.,
Lemma 2); and

U1. An upper-bound of I∗k←i(l) if both τk and τi are
preemptive (i.e., Ek←i in Eq. (8)).

However, under any scheduling algorithm that employs
the MPN preemption policy for a mixture of preemptive
and non-preemptive tasks, we need to address the following
framework/upper-bounds in addition to F1 and U1.

F2. A response time analysis for a non-preemptive task;
U2. An upper-bound of I∗k←i(l) if τk is non-preemptive but

τi is preemptive;
U3. An upper-bound of I∗k←i(l) if both τk and τi are non-

preemptive; and
U4. An upper-bound of I∗k←i(l) if τk is preemptive but τi

is non-preemptive.

We now address the above issues, starting from F2. To
do this, we first introduce a non-preemptive task’s property.
By definition, any job of a non-preemptive task cannot be
interrupted by any other job, and thus, the following property
holds.

Observation 1: Once a job of a non-preemptive task starts
its first unit of execution, the execution should not be
interrupted by any other job. Therefore, if a job of τk finishes
its first unit of execution at t, it finishes its entire execution
no later than t + Ck − 1.

Based on the above observation, we can derive an upper-
bound of the response time of a given non-preemptive task
by calculating when the first unit of execution of any job of
the task is finished. Then, the following lemma presents a
condition for an upper-bound on the response time.

Lemma 4: The response time of a non-preemptive task τk

is upper-bounded by l + Ck − 1 if the following inequality
holds:

1 +

—
1

m

X
τi∈Φ−{τk}

min
“
I
∗
k←i(l), l

”�
≤ l. (10)

Proof: We prove the lemma by contradiction. Suppose
that Eq. (10) holds for a given l, but the response time of
τk is longer than l + Ck − 1.
In this case, there exists t such that Ik(t, t + l) ≥ l;

otherwise, at least one unit of execution of any job of τk

is performed within [t, t + l), and then the response time is
upper-bounded by l+Ck−1. By Lemma 1 and the definition
of I∗k←i(l), the following inequality holds:

Ik(t, t + l) ≥ l

⇐⇒
X

τi∈Φ−{τk}

min
`
Ik←i(t, t + l), l

´
≥ m · l

=⇒
X

τi∈Φ−{τk}

min
`
I
∗
k←i(l), l

´
≥ m · l. (11)

Applying the final result of Eq. (11) to Eq. (10), we show
the contradiction, i.e., 1 + l ≤ l.

Then, we can develop F2 using Lemma 4, and by merging
F1 and F2, we develop a schedulability analysis framework
for any global work-conserving scheduling algorithm that
employs the MPN policy, as stated in the following theorem.

Theorem 1: When a task set Φ is scheduled by an MPN
scheduling algorithm, an upper-bound of the response time
of a preemptive task τk|Yk = 1 ∈ Φ is Rk = Rx

k such that
Rx+1

k ≤ Rx
k holds in the following formula, starting from

R0
k = Ck:

R
x+1

k
← Ck +

—
1

m

X
τi∈Φ−{τk}

min
“
I
∗
k←i(R

x

k), Rx

k − Ck + 1
”�

,

(12)

and an upper-bound of the response time of a non-
preemptive task τk|Yk = 0 ∈ Φ is Rk = F x

k + Ck − 1 such
that F x+1

k ≤ F x
k holds in the following formula, starting

from F 0
k = 1:

F
x+1

k
← 1 +

—
1

m

X
τi∈Φ−{τk}

min
“
I
∗
k←i(F

x

k), F x

k

”�
. (13)

Then, if Rk ≤ Dk holds for all τk ∈ Φ, Φ is schedulable
by the algorithm.
Note that the iteration of Eq. (13) (Eq. (12)) for a non-

preemptive (preemptive) task τk halts if F x
k + Ck− 1 > Dk

(Rx
k > Dk), meaning that τk is deemed unschedulable.

Proof: By Lemma 2, Rk derived by Eq. (12) is an
upper-bound on the response time of a preemptive task τk.

33

Figure 3. A case where a carry-out job of a non-preemptive task τi can
interfere with a job of a preemptive τk although the priority of the carry-out
job of τi is lower than that of the job of τk under mpn-EDF

Also, by Lemma 4, it is guarantee that the response time of
τk is upper-bounded by Rk = F x

k + Ck − 1 if F x+1

k ≤ F x
k .

Thus, if Rk ≤ Dk holds for all τk ∈ Φ, Φ is schedulable.

In order to develop a schedulability test of mpn-EDF,
the next step is to calculate U2, U3 and U4 under mpn-
EDF. Note that Ek←i in Eq. (8) can be an upper-bound of
I∗k←i(l) when τi is preemptive (i.e., Yi = 1) regardless of
Yk. Therefore, we use Ek←i for U2.
To address U3, we observe how a job of a non-preemptive

task interferes with a job of another non-preemptive task.

Observation 2: When both jobs JA and JB are non-
preemptive, JA can interfere with JB only in two cases:
(i) the priority of JA is higher than that of JB; and (ii) the
priority of JA is lower than that of JB but the execution of
JA starts before the release of JB .

Note that JA cannot interfere with JB in other than cases
(i) and (ii) since JA cannot be preempted once it starts
execution.
Consider an interval [t, t + l) where t is the release time

of a job of τk and 0 ≤ l ≤ Dk. According to Observation 2,
we may consider two cases depending on whether priority
inversion occurs or not. The first case is without priority
inversion; only higher-priority jobs of τi can interfere with
the job of τk. As shown in the analysis of fp-EDF, in this
case I∗k←i(l) is upper-bounded by Ek←i in Eq. (8). The
second case is with priority inversion; there should exist a
job of τi whose execution starts before the interval [t, t + l)
and whose deadline is later than t + Dk (i.e., lower-priority
than the job of τk) according to Observation 2. Therefore,
among jobs of τi, only one job of τi can interfere with the
job of τk in [t, t+l), and the maximum interference is Ci−1
because at least one unit of execution should be performed
before t, the release time of the job of τk.
When it comes to U4, one may think that the upper-bound

on U3 can be also used for U4. However, this is not true
because priority inversion occurs more extensively. Consider
an interval [t, t + l) where t is the release time of a job of
τk and 0 ≤ l ≤ Dk. A carry-out job of τi whose deadline
is later (i.e., which has lower-priority) than that of the job
of τk can interfere with the job of τk in [t, t + l); note that
this carry-out job of τi cannot start its execution before the

interval because it is released within the interval (by the
definition of carry-out jobs). Fig. 3 represents the case with
m = 2 and three tasks τi, τj and τk. In [t′, t′ + 1), both
jobs of a non-preemptive task τi and a preemptive task τk

execute. When a higher-priority job of τj is released at t′+1,
the job of τk has to pause its execution due to the higher-
priority job of τj , but the carry-out job of τi does not pause
due to its non-preemptiveness. In this case the carry-out job
of τi interferes with the job of τk after t′+1 regardless of its
priority, and in the worst case the pattern of the interference
of τi on τk is the same as that of the maximum execution
in Fig. 1. Therefore, we use Wi(l) for U4,1 which is an
upper-bound of I∗k←i(l) in any case.
Note that the case in Fig. 3 cannot occur when both τk

and τi are non-preemptive (i.e., U3). This is because the
job of τk in the figure cannot be preempted once it starts
execution. Therefore, the job of τk cannot be preempted at
t′ + 1, meaning that a job of τi released at t′ cannot block
the execution of the job of τk.
In summary, upper-bounds of I∗k←i(l) for the four cases

are as follows:

U1. Ek←i if both τk and τi are preemptive;
U2. Ek←i if τk is non-preemptive and τi is preemptive;
U3. Ek←i or Ci−1 depending on situations, if both τk and

τi are non-preemptive; and
U4. Wi(l) if τk is preemptive and τi is non-preemptive.

Then, the only remaining issue is how to handle two cases
in U3. While it is safe to set U3 as max(Ek←i, Ci− 1), we
can do better using the following simple observation.

Observation 3: Consider an interval [t, t + l) where t is
the release time of a job of τk and 0 ≤ l ≤ Dk. If τk

is non-preemptive, under mpn-EDF, m is an upper-bound
on the number of non-preemptive tasks τi (�= τk), each of
which invokes a job such that the job has lower-priority
than the job of τk but interferes with the job of τk. This is
because the number of jobs executed in any given time slot
is upper-bounded by m, and all the jobs of such tasks start
their execution before t and continue after t, meaning they
execute in [t− 1, t).

Based on this observation, we can tightly upper-bound U3
in a safe manner. Considering I∗k←i(l) is upper-bounded by
Wi(l) in Eq. (6) in any case, the following lemma presents

upper-bounds on
∑

τi∈Φ−{τk}
min

(
I∗k←i(l), l−Ck + 1

)
in

Eq. (12) and
∑

τi∈Φ−{τk}
min

(
I∗k←i(l), l

)
in Eq. (13) under

mpn-EDF.

Lemma 5: Under mpn-EDF, the following inequalities
hold for all τk ∈ Φ and 0 ≤ l ≤ Dk:

If τk is preemptive (i.e., Yk = 1),

1Actually, one unit of execution can be deducted since the carry-out job
of τi does not interfere with the job of τk in [t′, t′ + 1). We use a safe
upper-bound Wi(l) for simplicity of presentation.

34

X
τi∈Φ−{τk}

min
“
I
∗
k←i(l), l − Ck + 1

”
in Eq. (12)

≤
X

τi|Yi=1∈Φ−{τk}

min
`
Wi(l), Ek←i, l − Ck + 1

´

+
X

τi|Yi=0∈Φ−{τk}

min
`
Wi(l), l −Ck + 1

´
, (14)

and if τk is non-preemptive (i.e., Yk = 0),X
τi∈Φ−{τk}

min
“
I
∗
k←i(l), l

”
in Eq. (13)

≤
X

τi∈Φ−{τk}

min
`
Wi(l), Ek←i, l

´

+
X

m largest τi|Yi=0∈Φ−{τk}

max
“
0,

min
`
Wi(l), Ci − 1, l

´
−min

`
Wi(l), Ek←i, l

´”
. (15)

Proof: By U1 and U4, and Wi(l), the RHS of Eq. (14)
is a safe upper-bound on the LHS. To safely upper-bound
the LHS of Eq. (15), we initially add the upper-bound
of U2 (which is equivalent to U3 for the case of no
priority inversion) for every task. Then, we choose m
non-preemptive tasks τi which have the largest values of
the upper-bound of U3 for the case of priority inversion
(i.e., min

(
Wi(l), Ci − 1, l

)
) minus that for the case of no

priority inversion (i.e., min
(
Wi(l), Ek←i, l

)
), and add each

difference when it is positive. Then, the RHS of Eq. (15)
is a safe upper-bound on the LHS even if any combination
of at most m non-preemptive tasks τi belong to the case of
priority inversion to a non-preemptive task τk .

Then, to check the schedulability of a given task Φ under
mpn-EDF, we use Theorem 1 with the upper-bounds in
Lemma 5. Then, the way of using the slack values {Si}τi∈Φ

is the same as that of fp-EDF. We can obtain a simple
schedulability test of mpn-EDF by setting all Si to zero,
and also an improved test of mpn-EDF by iterations for slack
reclamation. Then, the schedulability tests of mpn-EDF have
the following property.

Lemma 6: The schedulability tests of mpn-EDF in The-
orem 1 with the upper-bounds in Lemma 5 with/without
slack reclamation (simple/improved tests) generalize the cor-
responding schedulability tests for fp-EDF in Lemma 2 with
the upper-bounds in Eq. (9) with/without slack reclamation,
(i.e., Theorem 6 with Eqs. (4) and (5), and Theorem 6 with
Eqs. (8) and (9) in [3]).

Proof: The proof is straightforward; the schedulability
analysis of fp-EDF is equivalent to that for mpn-EDF with
Yi = 1 for all τi ∈ Φ.

Since mpn-EDF also generalizes np-EDF, we highlight
that the schedulability test of mpn-EDF in Theorem 1 with
the upper-bounds in Lemma 5 is actually a new schedu-
lability test of np-EDF by setting all Yi to zero. We will
demonstrate in Section V that our np-EDF schedulability
test outperforms existing schedulability tests of np-EDF.

Algorithm 2 ASSIGNMENT OF {Yi}τi∈Φ

1: while true do
2: Calculate Ri, ∀τi ∈ Φ using Theorem 1 with the upper-

bounds in Lemma 5. If Ri ≤ Di,∀τi ∈ Φ, return
SCHEDULABLE with {Yi}τi∈Φ.

3: for τi ∈ Φ do
4: if Ri > Di then
5: if Yi = 0 then
6: Return UNSCHEDULABLE.
7: else
8: Yi ← 0
9: end if
10: end if
11: end for
12: end while

IV. OPTIMAL ASSIGNMENT OF {Yi} FOR MPN-EDF

While allowance/disallowance of preemption is a specifi-
cation of each task, it does not violate the specification to
execute preemptive tasks as if it were non-preemptive. To
utilize this for improving schedulability, we first study how
the response time of other tasks vary when we execute a
preemptive task as a non-preemptive one (i.e. Yi = 1 → 0).
Based on this, we develop an algorithm that finds an
assignment of {Yi}. Then, we prove its optimality when
the underlying schedulability test of mpn-EDF is the simple
one.
The following lemma presents the effect of making a

preemptive task non-preemptive on the response time of
other tasks.

Lemma 7: Suppose we apply the simple schedulability
test of mpn-EDF without slack reclamation, i.e., Sj is set
to 0 and does not change for all τj ∈ Φ. Also, suppose a
single preemptive task τi ∈ Φ is made non-preemptive (i.e.,
Yi = 1 → 0). Then, Rk ≤ R′k holds, where Rk and R′k
denote the upper-bounds of the response time of τk (�= τi)
when Yi = 1 and Yi = 0, respectively.

Proof: We consider two cases, i.e., τk is preemptive or
non-preemptive. If τk is preemptive, making a preemptive
task τi (�= τk) non-preemptive does not decrease the upper-
bound on I∗k←i(l). (i.e., U1≤U4). If τk is non-preemptive,
the same holds (i.e., U2≤U3). Since the upper-bound on the
interference gets larger, Rk ≤ R′k holds.

While our control knob is to make some preemptive
tasks non-preemptive, Lemma 7 states the fact that any
unschedulable task (whose upper-bound of the response time
is larger than it relative deadline) cannot be schedulable by
making other preemptive tasks non-preemptive when the
simple schedulability test is applied. Therefore, the only
way to improve schedulability is to make unschedulable
preemptive tasks themselves non-preemptive. Note that if we
make a preemptive task τk non-preemptive, an upper-bound
of I∗k←i(l) remains or decreases (i.e., U1=U2, and U4≥U3).
Algorithm 2 disallows the preemption of each preemptive

35

task (assignment of {Yi}τi∈Φ) when the response time is
greater than the relative deadline (i.e., Ri > Di). Note that
in Algorithm 2, we do not change tasks with Yi = 0 to
Yi = 1 since it violates their specification. The following
lemma proves the optimality of Algorithm 2.

Lemma 8 (Optimality of Algorithm 2): Suppose the sim-
ple schedulability test of mpn-EDF is applied, i.e., Theo-
rem 1 with the upper-bounds in Lemma 5 without slack
reclamation (Sj is set to 0 and does not change for all
τj ∈ Φ). If Algorithm 2 deems Φ unschedulable, any
Φ′ � {τ ′i} such that τ ′i is the same as τi except Y ′i (≤ Yi)
cannot be deemed schedulable by the simple schedulability
test of mpn-EDF.

Proof: Suppose that there exists a task set Φ′ which is
schedulable by the simple schedulability test of mpn-EDF,
but Algorithm 2 returns unschedulable. We divide Φ into
two disjoint task sets: ΦA = {τi ∈ Φ|Yi = Y ′i } and ΦB =
{τi ∈ Φ|Yi = 1 and Y ′i = 0}. Since Φ′ is schedulable, at the
first iteration of Steps 2–11, tasks in ΦA satisfy Ri ≤ Di by
Lemma 7, and tasks in ΦB may violate Ri ≤ Di. Therefore,
at the first iteration, only some tasks in ΦB can change its
Yi as 0. Similarly, at each iteration, tasks in ΦA always
satisfy Ri ≤ Di by Lemma 7, and each task in ΦB either
satisfies Ri ≤ Di or eventually becomes non-preemptive
(i.e., Yi = 0). This means that the algorithm finds another
schedulable assignment or tests Φ′ eventually. In both cases,
the algorithm returns schedulable, which is a contradiction.

Then, we can find the optimal disallowance of preemp-
tions with low time-complexity; while a naive approach
needs to consider O(2n) assignments, Algorithm 2 finds the
optimal assignment by considering only O(n) assignments,
where n is the number of preemptive tasks in a task set Φ.
However, such optimality does not necessarily hold when

we apply the improved schedulability test of mpn-EDF,
which uses slack reclamation. This is because if we make
a preemptive task τi non-preemptive, its response time may
get decreased, meaning that the slack value may also get
increased. This can help reduce the response time of another
task τk. Despite its non-optimality, Algorithm 2 with the
improved test effectively finds a large number of additional
schedulable task sets which are not schedulable by the
corresponding improved tests of np-EDF and fp-EDF, which
will be demonstrated in Section V.

V. EVALUATION

In this section, we evaluate the schedulability analysis of
mpn-EDF and the algorithm that disallows preemption based
on this analysis. We first describe how task sets are generated
and then present the average performance improvement of
the schedulability test of np-EDF (i.e., a special case of mpn-
EDF) over existing np-EDF tests [4, 5]. We also compare the
schedulability performance of mpn-EDF with disallowance
of preemption, with fp-EDF and np-EDF.

A. Generation of task sets

We generate task sets based on the technique in [9], which
has also been widely used elsewhere [10, 11]. There are three
input parameters: (a) the task type (constrained or implicit
deadlines), (b) the number of cores (m = 2, 4 and 8), and
(c) individual task utilization (Ci/Ti) distributions (bimodal
with parameter:2 0.1, 0.3, 0.5, 0.7, or 0.9, or exponential
with parameter:3 0.1, 0.3, 0.5, 0.7, or 0.9). For each task, Ti

is uniformly distributed in [1, Tmax = 1000], Ci is chosen
based on the given bimodal or exponential parameter, and Di

is uniformly distributed in [Ci, Ti] for constrained deadline
task systems or Di is equal to Ti for implicit deadline task
systems.
For each combination of (a), (b) and (c), we repeat the

following procedure and generate 10,000 task sets, thus
resulting in 100,000 task sets for any given m and the type
of task sets.

1. Initially, we generate a set of m + 1 tasks.
2. In order to exclude unschedulable sets, we check

whether the generated task set can pass a necessary
feasibility condition [12].

3. If it fails to pass the feasibility test, we discard the
generated task set and return to Step 1. Otherwise, we
include this set for evaluation. Then, this task set serves
as a basis for the next new set; we create a new set by
adding a new task into an already created and tested
set, and return to Step 2.

B. Average schedulability

We show the number of task sets schedulable by the
following schedulability tests:

• The only existing np-EDF tests [4, 5] (denoted by np-
GB), i.e., schedulable by at least one of the tests;

• Our schedulability test for np-EDF, i.e., Theorem 1 with
the upper-bounds in Lemma 5 when {Yi = 0} (denoted
by np-Ours);

• The existing fp-EDF test [3], which is equivalent to our
schedulability test for fp-EDF, i.e., Theorem 1 with the
upper-bounds in Lemma 5 when {Yi = 0} (denoted by
fp);

• np-Ours and fp (denoted by np+fp), i.e., schedulable
by at least one of np-Ours and fp; and

• Our schedulability test of mpn-EDF with disallowance
preemption by Algorithm 2 when the initial preemption
requirement for each task is {Yi = 1} (denoted by
mpn-OPA).

Note that we present our schedulability tests with the best
performance; in other words, we present the improved test
with slack reclamation for np-Ours, fp, and mpn-OPA.

2For a given bimodal parameter p, a value for Ci/Ti is uniformly chosen
in [0, 0.5) with probability p, and in [0.5, 1] with probability 1− p.

3For a given exponential parameter 1/λ, a value for Ci/Ti is chosen
according to an exponential distribution whose probability density function
is λ · exp(−λ · x).

36

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.5 1 1.5 2

T
h

e
 n

u
m

b
e
r

o
f

sc
h

e
d

u
la

b
le

 t
a
sk

 s
e
ts

Task set utilization

mpn-OPA
np+fp

fp
np-Ours

np-GB

(a) m=2

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8

T
h

e
 n

u
m

b
e
r

o
f

sc
h

e
d

u
la

b
le

 t
a
sk

 s
e
ts

Task set utilization

mpn-OPA
np+fp

fp
np-Ours

np-GB

(b) m=8

Figure 4. Schedulability results of constrained deadline task sets

 0

 200

 400

 600

 800

 1000

 1200

 0 0.5 1 1.5 2

T
h

e
 n

u
m

b
e
r

o
f

sc
h

e
d

u
la

b
le

 t
a
sk

 s
e
ts

Task set utilization

mpn-OPA
np+fp

fp
np-Ours

np-GB

(a) m=2

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8

T
h

e
 n

u
m

b
e
r

o
f

sc
h

e
d

u
la

b
le

 t
a
sk

 s
e
ts

Task set utilization

mpn-OPA
np+fp

fp
np-Ours

np-GB

(b) m=8

Figure 5. Schedulability results of implicit deadline task sets

Figs. 4 and 5 show average schedulability results for
constrained and implicit deadline task sets over different
number of processors. Of different m, we choose to show
for m = 2 and 8 since the simulation results with different
values of m have similar behaviors. Each figure consists
of five lines, each plot showing the number of task sets
proven schedulable by each test, with task set utilization (i.e.,
Usys �

∑
τi∈Φ

Ci/Ti) in [Usys− 0.01 ·m, Usys +0.01 ·m).

As shown in Figs. 4 and 5, np-Ours outperforms np-
GB regardless of the type of task sets and the number of
processors (m). However, the degree of improvement gets
larger as the number of processors is increasing; np-Ours
finds 20.0%, 34.2% and 46.6% additional constrained dead-
line task sets, which are deemed unschedulable by np-GB,
respectively for m = 2, 4 and 8. The improvements are more
significant in implicit deadline task sets: 25.0%, 79.9%, and
109.1%, respectively, for m = 2, 4 and 8. However, of those
task sets which are deemed schedulable by np-GB, only up
to 0.2% task sets are deemed unschedulable by np-Ours in
any case.

There are two reasons why np-Ours outperforms np-
GB. First, while np-GB finds the time of completion of

the last execution, np-Ours uses the framework of Eq. (13),
which identifies the time instant of the first execution of
a given job J . Once we find this time instant, any other
job executed after that instant cannot block the execution
of J , reducing the pessimism of calculating the amount of
interference. Second, we have shown in Observation 2 that
a non-preemptive job Jk can be blocked only by (i) higher-
priority jobs and (ii) jobs that start their execution before
the release time of Jk. These two cases, incorporated into
the fact that the number of jobs of (ii) is upper-bounded by
m, yield a tighter (i.e., less pessimistic) interference bound
than those used in np-GB.

We now compare mpn-OPA with np+fp. As shown in
the figures, mpn-OPA can find additional schedulable task
sets which are schedulable by neither np-Ours nor fp. The
fraction of such additional task sets also gets increased, as
the number of processors becomes larger; mpn-OPA can
find 10.2% (5.0%), 20.9% (12.5%), and 30.9% (21.3%)
additional schedulable constrained (implicit) deadline task
sets which are deemed schedulable by neither np-Ours nor
fp, respectively, for m = 2, 4 and 8.

37

In summary, the proposed schedulability analysis of
mpn-EDF significantly improves the schedulability of np-
EDF, which is a special case of mpn-EDF. The disal-
lowance of preemption enables discovery of a large num-
ber of additional schedulable task sets by exploiting non-
preemptiveness as a control knob.

VI. RELATED WORK

For real-time uniprocessor systems, researchers have pro-
posed more general preemption policies than the fully-
preemptive and non-preemptive policies to meet different
goals (e.g., see a survey [2]). Some of them [13, 14] have
aimed to improve the schedulability of FP by using the
preemption requirement as a control knob, because the
fully-preemptive policy is not an optimal preemption policy
for FP on a uniprocessor platform. Several studies [15–
18] have also focused on expressing broader preemption
requirements, such as non-preemptive execution parts and
the limit on the number of preemptions, and performed their
schedulability analyses for uniprocessor systems. However,
little has been done on schedulability analysis for more
general preemption policies than fully-preemptive and non-
preemptive policies for increasingly popular real-time multi-
core platforms, which is the subject of this paper.

VII. CONCLUSION

We have proposed the MPN preemption policy, a gen-
eralization of preemptive and non-preemptive policies for
real-time multicore platforms, and then developed a schedu-
lability analysis framework for MPN scheduling algorithms.
We have chosen mpn-EDF as an example and carried out its
schedulability analysis, showing that it not only generalizes
an existing fp-EDF schedulability analysis, but also outper-
forms existing np-EDF schedulability analyses. We have also
presented a suboptimal assignment algorithm of disallowing
preemptions, and demonstrated that the algorithm efficiently
finds additional schedulable task sets which are schedulable
by neither fp-EDF nor np-EDF.
Although we have only shown the application of the

proposed schedulability analysis framework to mpn-EDF,
it can be applied to other existing prioritization policies
once the interference between tasks under each prioritization
policy is upper-bounded. In future, we plan to analyze the
schedulability of other MPN scheduling algorithms (e.g.,
mpn-FP). We would also like to develop a schedulability
analysis framework for more general preemption policies
than the MPN policy. For example, instead of accommo-
dating only preemptive and non-preemptive tasks, we may
also consider a task with limited preemptions in terms of
the number and/or the duration of preemptions, which have
been already studied for uniprocessor scheduling.

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” Journal of
the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[2] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive
scheduling for real-time systems: a survey,” To appear in
IEEE Transactions on Industrial Informatics.

[3] M. Bertogna and M. Cirinei, “Response-time analysis for
globally scheduled symmetric multiprocessor platforms,” in
Proceedings of IEEE Real-Time Systems Symposium (RTSS),
2007, pp. 149–160.

[4] S. Baruah, “The non-preemptive scheduling of periodic tasks
upon multiprocessors,” Real-Time Systems, vol. 32, no. 1, pp.
9–20, 2006.

[5] N. Guan, W. Yi, Z. Gu, Q. Deng, and G. Yu, “New schedu-
lability test conditions for non-preemptive scheduling on
multiprocessor platforms,” in Proceedings of IEEE Real-Time
Systems Symposium (RTSS), 2008, pp. 137–146.

[6] A. Mok, “Fundamental design problems of distributed sys-
tems for the hard-real-time environment,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1983.

[7] M. Bertogna and S. Baruah, “Tests for global EDF schedula-
bility analysis,” Journal of systems architecture, vol. 57, pp.
487–497, 2011.

[8] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedu-
lability analysis of EDF on multiprocessor platforms,” in
Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS), 2005, pp. 209–218.

[9] T. P. Baker, “Comparison of empirical success rates of global
vs. paritioned fixed-priority and EDF scheduling for hand real
time,” Dept. of Computer Science, Florida State University,
Tallahasee, Tech. Rep. TR-050601, 2005.

[10] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability
analysis of global scheduling algorithms on multiprocessor
platforms,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, pp. 553–566, 2009.

[11] J. Lee, A. Easwaran, and I. Shin, “Maximizing contention-
free executions in multiprocessor scheduling,” in Proceedings
of IEEE Real-Time Technology and Applications Symposium
(RTAS), 2011, pp. 235–244.

[12] T. P. Baker and M. Cirinei, “A necessary and sometimes
sufficient condition for the feasibility of sets of sporadic hard-
deadline tasks,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), 2006, pp. 178–190.

[13] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks
with preemption threshold,” in Proceedings of IEEE Interna-
tional Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 1999, pp. 318–335.

[14] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility
of fixed priority tasks using non-preemptive regions,” in
Proceedings of IEEE Real-Time Systems Symposium (RTSS),
2011, pp. 251–260.

[15] S. Baruah, “The limited-preemption uniprocessor scheduling
of sporadic task systems,” in Proceedings of Euromicro Con-
ference on Real-Time Systems (ECRTS), 2005, pp. 137–144.

[16] G. Yao, G. Buttazzo, and M. Bertogna, “Bounding the max-
imum length of non-preemptive regions under fixed priority
scheduling,” in Proceedings of IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2009, pp. 351–360.

[17] M. Bertogna and S. Baruah, “Limited preemption EDF
scheduling of sporadic task systems,” IEEE Transactions on
Industrial Informatics, vol. 6, no. 4, pp. 579–591, 2010.

[18] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis
under fixed priority scheduling with limited preemptions,”
Real-Time Systems, vol. 47, no. 3, pp. 198–223, 2011.

38

