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Abstract—In global real-time multiprocessor scheduling, a
recent analysis technique for Task-level Fixed-Priority (TFP)
scheduling has been shown to outperform many of the analyses
for Job-level Fixed-Priority (JFP) scheduling on average. Since
JFP is a generalization of TFP scheduling, and the TFP analysis
technique itself has been adapted from an earlier JFP analysis,
this result is counter-intuitive and in our opinion highlights the
lack of good JFP scheduling techniques. Towards generalizing
the superior TFP analysis to JFP scheduling, we propose
the Smallest Pseudo-Deadline First (SPDF) JFP scheduling
algorithm. SPDF uses a simple task-level parameter called
pseudo-deadline to prioritize jobs, and hence can behave as a
TFP or JFP scheduler depending on the values of the pseudo-
deadlines. This natural transition from TFP to JFP scheduling
has enabled us to incorporate the superior TFP analysis
technique in an SPDF schedulability test. We also present a
pseudo-deadline assignment algorithm for SPDF scheduling
that extends the well-known Optimal Priority Assignment
(OPA) algorithm for TFP scheduling. We show that our
algorithm is optimal for the derived schedulability test, and also
present a heuristic to overcome the computational complexity
issue of the optimal algorithm. Our simulation results show
that the SPDF algorithm with the new analysis significantly
outperforms state-of-the-art TFP and JFP analysis.

I. INTRODUCTION

Multi-core processing architectures are now being in-

creasingly used in embedded systems with real-time con-

straints, and as a result real-time scheduling research has

been steadily gaining importance. Given a set of tasks with

timing requirements (i.e., deadlines), where in each task can

potentially generate an infinite sequence of jobs, real-time

scheduling determines the order of execution of those jobs

in order to satisfy the deadlines. Two fundamental problems

are the focus of most research in this area: algorithm design

that aims to derive task and job priorities so as to satisfy all

deadlines, and schedulability analysis that aims to provide

guarantees of deadline satisfaction.

Priority-based real-time multi-processor scheduling ap-

proaches can be broadly classified into three categories. A
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Task-level Fixed-Priority (TFP) scheduler assigns a fixed

priority to all the jobs of each single task, a Job-level Fixed-

Priority (JFP) scheduler assigns a fixed priority to each

single job, and a Job-level Dynamic-Priority (JDP) scheduler

assigns a priority to each single job that can dynamically

change over time. It is easy to see from these definitions

that JFP is a generalization of TFP scheduling, and JDP

is a generalization of JFP scheduling. In the uniprocessor

case several examples of optimal algorithms exist for each

of these categories including DM (Deadline-Monotonic) for

TFP [1], EDF (Earliest Deadline First) for JFP [2], and LLF

(Least Laxity First) for JDP scheduling [3]. For multiproces-

sor scheduling, depending on how the tasks are mapped to

cores, scheduling approaches can also be broadly classified

into partitioned for many-to-one mappings, global for all-

to-all mappings, and clustered for many-to-many mappings.

In this paper, we focus on global JFP scheduling.

Many different global TFP algorithms like RM (Rate-

Monotonic) [2], OPA (Optimal Priority Assignment) [4], and

RM-US [5], have been proposed in the past. Several analysis

techniques have also been derived for these algorithms such

as those based on utilization bounds [5], response-time

analysis [6], and Deadline-Analysis with Limited Carry-in

(DA-LC) [7]. An interesting aspect of the DA-LC analysis is

that it was first derived for JFP scheduling [8], and later spe-

cialized to TFP scheduling with a key observation of worst-

case critical instant for LC. It was also shown that combining

OPA with DA-LC leads to a significant improvement in the

schedulability of TFP scheduling, even when compared to

JFP scheduling, although JFP is a generalization of TFP [9].

JDP scheduling is probably the most widely studied

among the three, mainly because all known optimal multi-

processor scheduling algorithms fall in this category. Starting

with the optimal algorithm pFair that incurs many task

preemptions and migrations [10], most recent work has

focused on either preserving the optimality while reduc-

ing preemptions and migrations [11], [12], or foregoing

optimality and reducing preemptions and migrations even

further [13], [14].
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Although TFP scheduling incurs very little preemption

and migration overhead, it is limited in terms of its ability

to meet deadlines. Conversely, although JDP scheduling has

proven to be successful in scheduling many task sets, its

applicability is limited due to the high number of preemp-

tions and migrations. JFP scheduling seems to offer benefits

from both worlds: on account of the per-job priority, it is

generally able to schedule more task sets when compared

to TFP scheduling, and at the same time, it does not suffer

from as many preemptions and migrations as JDP scheduling

because the job priorities do not change over time. Similar

to the TFP and JDP cases, many different JFP algorithms

like EDF [2], EDF-US [15], fp-EDF [16], and EQDF [17],

have been proposed in the past. Analysis techniques for JFP

algorithms have also matured over the years starting with

the utilization based tests for EDF [18] and EDF-US [15].

Tests based on Deadline-Analysis (DA) [19], Response-Time

Analysis (RTA) [6], and DA with Limited Carry-in (DA-

LC) [8] have all been derived.

Although JFP is a generalization of TFP by definition, and

many different TFP and JFP algorithms/analysis have been

presented in the past, there is no clear dominance relation

between any of them. On the contrary, the TFP technique

of OPA with DA-LC analysis seems to outperform many

JFP analysis techniques on average [9]. We believe that the

reason for this rather counter-intuitive behavior is less a

feature of TFP and more a lack of good JFP algorithms and

analysis techniques for them. This motivated our research

for a better understanding on whether, why not, and how

such TFP techniques can be applied to JFP scheduling,

considering the fact that TFP is a specialization of JFP.

This paper presents a JFP scheduling algorithm, called

SPDF (Smallest Pseudo-Deadline First), that uses a task-

level parameter called pseudo-deadline to prioritize jobs. To

the best of our knowledge, this is the first algorithm that

can be controlled to behave either as a TFP or as a JFP

scheduler, depending on the values assigned to the pseudo

deadlines. As a consequence of this seamless transition

from TFP to JFP scheduling, we were able to extend the

superior performance benefits of LC-based TFP analysis

techniques to JFP schedulers like SPDF. Furthermore, we

were also able to extend the well-known TFP-specific OPA

algorithm to JFP scheduling, yielding an Optimal Pseudo-

Deadline Assignment (OPDA) algorithm subject to some

given SPDF analysis. Although we show that the OPDA

algorithm is optimal for the derived DA-LC analysis, its

runtime complexity in the worst-case is exponential. There-

fore, as an alternative we propose a heuristic approach that

combines some parametric features of OPDA and a heuristic

algorithm called largest slack first (LSF). Our simulation

on synthetic workloads show that our heuristic approach

outperforms the state-of-the-art TFP and JFP schedulability

significantly. Our approach is shown to find 5-21% and 20-

100% more schedulable task sets, compared to OPA with

DA-LC analysis and EDF with RTA analysis, respectively.

Contributions. The main contributions of this paper can

be summarized as follows:

1) We present the first algorithm (SPDF) that generalizes

TFP scheduling to JFP scheduling with a simple task-

level parameter called pseudo-deadline. We show that

SPDF dominates all TFP algorithms when pseudo-

deadlines are appropriately determined. We also show

that SPDF can easily express other well-known JFP al-

gorithms like EDF, EDF-US and fp-EDF. (Section III)

2) We present a DA-LC analysis technique for SPDF,

and this is the first JFP schedulability analysis that

incorporates the superior performing TFP-tailored LC

technique. (Section IV)

3) We present an Optimal Pseudo-Deadline Assignment

(OPDA) algorithm for SPDF, generalizing OPA with

DA-LC analysis. (Section V)

4) Given the computational intractability of OPDA, we

propose a heuristic approach that also dominates OPA

with DA-LC analysis. (Section VI). Our evaluation

results show that our heuristic approach is quite effec-

tive in advancing the schedulability of JFP schedulers

when DA-based analysis is used. (Section VII).

II. SYSTEM MODEL

This paper studies the global scheduling problem on a

homogeneous multiprocessor platform with m identical pro-

cessors. We consider a sporadic task model τ , in which a task

τi ∈ τ represents a potentially infinite job release sequence

and is characterized by (Ti, Ci, Di): Ti is the minimum

inter-job separation, Ci is the worst-case execution time,

and Di is the relative deadline. All tasks have constrained

deadlines, i.e., (∀i, Ci ≤ Di ≤ Ti), and a single job cannot

be executed in parallel.

The density of a task is defined as δi = Ci/Di, and the

system density δsys is given by
∑

τi∈τ δi. We let Jh
i denote

the h-th job of task τi, and rhi and dhi denote its release

time and absolute deadline, respectively, where dhi is given

by dhi = rhi + Di. The scheduling window of a job Jh
i is

then defined as the interval [rhi , d
h
i ). Two jobs Jh

i and J l
k

are said to be competing with each other if their scheduling

windows overlap.

In this paper, we consider a scheduling algorithm called

SPDF (Smallest Pseudo-Deadline First). Each task τi is as-

signed a task-level parameter called relative pseudo-deadline
(Pi), and the absolute pseudo-deadline phi of each job Jh

i

is then determined as phi = rhi + Pi. We consider pseudo-

deadlines as integer values. The SPDF algorithm assigns the

highest priority to the job with the smallest phi . It is easy to

see that SPDF is a JFP scheduling algorithm and its behavior

is very similar to the classic Earliest Deadline First (EDF)

algorithm, except that SPDF uses job “pseudo-deadlines”

instead of deadlines. Note that the pseudo-deadline is a
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metric that is only used for prioritizing jobs and it does

not change any of the original task specification, i.e., jobs

are still required to complete by their deadlines.

SPDF scheduling is closely related to the previous work

on EQDF (Earliest Quasi-Deadline First) scheduling [17]. In

EQDF scheduling, each job Jh
i is assigned a quasi-deadline

qhi = dhi − k · Ci, and jobs with earlier quasi-deadlines are

given higher priorities. SPDF is a generalization of EQDF,

because the quasi-deadlines of tasks are controlled by a

system-wide parameter k, while the pseudo-deadlines of

tasks are individually controlled by task-level parameters Pi.

In both TFP and JFP scheduling, schedulability analysis

generally consists of two sub-problems: 1) determine the

priority ordering of jobs and tasks, and 2) perform schedu-

lability test to determine whether a task set with the given

priority ordering is schedulable. A task set is said to be

schedulable under a priority ordering if all job deadlines are

met in the resulting schedule. Note that a schedulability test

may be sufficient but not always necessary, i.e., task sets

that fail the test may still be schedulable. For the SPDF al-

gorithm, since pseudo-deadlines determine job priorities, the

two fundamental problems that we address in this paper are:

1) deriving a schedulability test, and 2) assigning pseudo-

deadlines to a task set such that it passes the schedulability

test and hence is schedulable with SPDF scheduling.

Now we present some relations and optimality concepts

that we will use in the paper. The notion of an optimal

priority assignment algorithm has been defined for TFP

algorithms in the past [9]. A similar notion of an Optimal

Pseudo-Deadline Assignment (OPDA) algorithm can be de-

fined for SPDF as follows.

Definition 1 (OPDA algorithm): A pseudo-deadline as-

signment algorithm A is “optimal” with respect to a schedu-

lability test X and a given task model, if and only if given

any task set τ that is compliant with the task model, if there

exists a pseudo-deadline assignment such that τ passes test

X, then τ can also pass test X using the pseudo-deadline

assignment of algorithm A.

The performance of different schedulability tests may be

compared using the dominance relation which has been

defined in literature [9].

Definition 2 (Dominance [9]): Schedulability test X

dominates schedulability test Y, if any given priority

ordered task set τ that passes test Y also passes test X, and

there exists at least one priority ordered task set that passes

test X but fails test Y.

Similar to the above comparison, the performance of dif-

ferent scheduling algorithms may also be compared without

referring to specific schedulability tests, using the “better

than” relation defined below.

Definition 3 (Better than relation): A scheduling algo-

rithm A is better than scheduling algorithm B, if any task

set that is schedulable by B is also schedulable by A, and

there exist at least one task set that is schedulable by A but

Figure 1. When Pa ≤ Pb −Db, Ja always preempts Jb.

not schedulable by B.

III. SPDF SCHEDULING ALGORITHM

As described previously, the SPDF algorithm assigns

priorities to jobs according to their pseudo-deadlines. In this

section, we first classify inter-task priority relations and then

show that SPDF is better than any existing TFP and JFP

algorithms.

Inter-task priority dominance relation. For a task pair

(τi, τk), there are two possible priority dominance relations.

• Type A. One task (assuming it is τi without loss of

generality) is said to be strictly higher than the other

task (τk), denoted by τi � τk, if every job of τi has a

higher priority than its competing jobs of τk; Lemma 1

gives a necessary and sufficient condition of when this

may happen. We express a task pair (τi, τk) belongs to

Type A1 and Type A2 dominance relations if τi � τk
and τi ≺ τk, respectively.

• Type B. Two tasks τi and τk are said to be mutual,
denoted by τi ≺� τk, if some jobs of τi have higher

priorities than their competing jobs of τk but the other

jobs of τi have lower priorities than their competing

jobs of τk.

Lemma 1: Any two tasks τa and τb will have Type A1

relation in the SPDF schedule if and only if Pa ≤ Pb−Db.

Proof: We show that SPDF always assigns higher

priority to jobs of τa, if and only if Pa ≤ Pb −Db.

• “←” sufficient condition:

Let Jx denote any job of τx. Suppose Ja is released

within the scheduling window of Jb, i.e., rb ≤ ra <
rb+Db. The pseudo-deadline of Ja is pa = ra+Pa <
(rb +Db) + (Pb −Db) = rb + Pb = pb. Such scenario

is depicted in Figure 11. Since pa < pb, under SPDF
schedule, Ja preempts Jb. Note that Ja and Jb are

arbitrary jobs, i.e., we show that jobs of τa always

preempts jobs of τb.

Next we show that no job of τb can preempt any job of

τa. If Jb is released within the scheduling window of

Ja, then rb ≥ ra. The pseudo-deadline of Jb is pb =
rb + Pb ≥ ra + (Pa + Db) > ra + Pa = pa. Since

pb > pa, under SPDF, Jb cannot preempt Ja.

Therefore, if Pa ≤ Pb −Db, there is Type A1 relation

between τa and τb.

1For illustration purpose, Pa and Pb are positive in Figure 1, but it is
easy to see the proof applies to arbitrary Pa and Pb.
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• “→” necessary condition:

Negate the condition and suppose Pa > Pb − Db.

We show a case in which Ja competes with Jb but

Ja is assigned lower priority by SPDF. Suppose Ja
is released during (max(rb, rb + Pb − Pa), rb + Db]
(the max operation is to count for the possibility that

Pb < Pa and here we want the arrival time of Ja to be

later than rb), and note that such interval is non-empty

because Pb − Pa < Db. We have pa = ra + Pa >
(rb +Pb−Pa)+Pa = rb +Pb = pb. Therefore Ja has

lower priority than Jb under SPDF.

Lemma 1 shows that for any task set τ , SPDF will be

able to maintain the priority order τa � τb, if Pa ≤ Pb−Db.

Example 3.1: Let τ = {τ1 = τ2 = τ3 = (3, 2, 3), τ4 =
(4, 2, 4), τ5 = τ6 = τ7 = (3, 0.1, 3)} and m = 3. τ is not

schedulable under EDF [2], any TFP algorithm, fp-EDF [16]

or EDF-US [15], but it is schedulable under SPDF by setting

pseudo-deadlines in the following way: P1 = P2 = P3 =
3, P4 = 4, P5 = P6 = P7 = 1000. Essentially, SPDF can

schedule τ by assigning lowest priorities to the last three

tasks such that each of the other four tasks is strictly higher

than the last three tasks and the remaining four tasks are

scheduled by EDF.

Theorem 1: SPDF is better than all TFP algorithms,

EDF [2], EDF-US [15], and fp-EDF [16].

Proof: By Lemma 1, any task set that is schedulable

by any TFP algorithm is also schedulable by SPDF, because

SPDF can generate exactly the same priority ordering.

SPDF schedules task sets in exactly the same way as

EDF does when ∀i, Pi = Di. Therefore any task set that

is schedulable by EDF is schedulable by SPDF.

Given a task set τ , assuming that the tasks sorted non-

increasingly by their utilizations, both EDF-US and fp-EDF

assign highest fixed priorities to a subset of “heavy” tasks τH
and run EDF on the remaining tasks τL = τ\τH . Then SPDF

can generate exactly the same schedule by setting ∀τi ∈
τL, Pi = Di and enforcing ∀τa, τb ∈ τH(τa � τb), Pa ≤
Pb−Db as well as that maxτx∈τH Px ≤ minτy∈τL(Py−Dy).
Therefore any task set that is schedulable by EDF-US or fp-

EDF will be schedulable by SPDF.

Finally, Example 3.1 gives a task set that is schedulable by

SPDF but not schedulable by any TFP algorithm, EDF [2],

EDF-US [15], or fp-EDF [16].

IV. SPDF SCHEDULABILITY ANALYSIS

This section derives a schedulability condition for the

proposed SPDF scheduling algorithm. We first recapitulate

an interference-based analysis, which has served as a basis

for the schedulability conditions of various algorithms [20],

[19], [7], [21], [17], [22], [13], including EDF and TFP

algorithms. We also explain an existing technique, called

DA-LC, which can substantially improve the performance of

the interfere-based analysis. We then discuss how to apply

the interference-based analysis to the SPDF algorithm.

Recapitulation of Interference-based Analysis. The to-
tal interference on a task τk in an interval [a, b) (denoted by

Ik(a, b)) is defined by the cumulative length of all intervals

in which τk is ready to execute but is not executing due

to higher priority jobs of other tasks. We also define the

interference of a task τi on a task τk in an interval [a, b)
(denoted by Ii,k(a, b)) is defined as the cumulative length

of all intervals in which τk is ready to execute but it is not

executing since τi is executing instead. Since a task cannot

be scheduled only when m other tasks execute, a relation

between Ik(a, b) and Ii,k(a, b) has been derived in Lemma 3

in [19] as follows:

Ik(a, b) =

∑
i�=k Ii,k(a, b)

m
. (1)

Let J∗
k denote the job that receives the maximum total

interference among jobs of τk, and then the worst-case

total interference on the job of τk (denoted by I∗k ) can be

expressed

I∗k � max
h

(Ik(r
h
k , d

h
k)) = Ik(r

∗
k, d

∗
k). (2)

For notational convenience, we also define

I∗i,k � Ii,k(r
∗
k, d

∗
k). (3)

Using the above definitions, the studies [19], [21] devel-

oped the exact schedulability condition of global multipro-

cessor scheduling algorithms as follows:

Lemma 2 (from [19], [21]): A task set τ is schedulable

on a multiprocessor composed by m identical processors if

and only if the following condition holds for every task τk:
∑

τi∈τ\{τk}
min(I∗i,k, Dk − Ck + 1) < m · (Dk − Ck + 1). (4)

Since it is generally intractable to compute exact I∗i,k un-

der a given scheduling algorithm, existing approaches [20],

[19], [7], [21], [17], [22], [13] have derived upper-bounds

on I∗i,k under their target algorithms, resulting in sufficient

schedulability tests.

DA-LC Analysis Technique. The DA-LC (Deadline

Analysis with Limited Carry-in) analysis technique has been

introduced to calculate the maximum interference of carry-
in jobs. A job is said to be a carry-in job of a given

interval when the job is released before the interval, but

has a deadline within the interval. The DA-LC technique

was initially developed for EDF [8], based on the concept

of busy interval, which refers to the maximum continu-

ous interval during which all processors are occupied. By

definition, there exist at most m − 1 carry-in jobs into a

busy interval. The DA-LC technique developed for EDF

requires an investigation into all possible busy intervals

of arbitrary length [8]. It was later specialized to TFP
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Figure 2. Example of τ ′ � τ ′′: τ1 and τ2 are strictly higher than τ3, τ4,
and τ5, respectively.

scheduling algorithms with a key observation on the worst-

case critical instant [7]. The maximum interference on a job

Jk comes with at most m − 1 higher-priority carry-in jobs

into the scheduling window of Jk. This is because, in the

case of more than m carry-in jobs, Jk would have only

larger interference when it is released earlier until it has at

most m − 1 carry-in jobs. It is worth noting that releasing

Jk earlier does not affect the execution of all other higher-

priority jobs under TFP scheduling. On the other hand,

releasing Jk earlier consequently makes its deadline earlier,

and this can potentially affect priority ordering between

Jk and other tasks under EDF scheduling. This way, it is

possible to consider only at most m − 1 carry-in higher-

priority tasks’ jobs in a job’s scheduling window, resulting

in a tighter upper-bound on the maximum interference on

the job. Without such a condition for the critical instance,

it is required either to consider that all higher-priority jobs

can be carry-in in the scheduling window, or to investigate

all possible busy intervals of arbitrary length before the

scheduling window.

Interference-based Analysis under SPDF. We discuss

how to derive an upper-bound on I∗i,k under SPDF schedul-

ing. As described in the previous section, such a dominance

relation falls into three types: A1, A2, and B. From the

standpoint of τk, each task τi (
= τk) belongs to one of the

three sets, τ
(A1)
k , τ

(A2)
k and τ

(B)
k , according to its relation

with τk. Specifically, τi belongs τ
(A1)
k if τi � τk (Type

A1), τ
(A2)
k if τi ≺ τk (Type A2), or τ

(B)
k otherwise (i.e.,

τi ≺� τk, Type B).

Type A1. We first consider the case of τi � τk (Type A1)

in deriving an upper-bound on I∗i,k. In this case, a tighter

bound can be derived with the use of the DA-LC analysis.

Observing that the TFP-specific DA-LC technique relies on

the inter-task Type A relation, we explore a possibility of

employing the technique even under SPDF scheduling, in

particular, to some tasks under Type A relation. Towards this,

let us consider a task set τ ′ as strictly higher than another

task set τ ′′ (denoted as τ ′ � τ ′′) if it holds that, for all

tasks τi ∈ τ ′ and τj ∈ τ ′′, τi � τj (see Figure 2). We then

partition τ into two disjoint subsets, τ
(A∗)
k and τ

(B∗)
k , from

the standpoint of τk such that τ
(B∗)
k must include τk and

τ
(A∗)
k � τ

(B∗)
k . It holds by definition that τ

(A∗)
k ⊆ τ

(A1)
k ,

and we here consider having the largest possible τ
(A∗)
k for

better schedulability.

Releasing any task τb ∈ τ
(B∗)
k earlier can change priority

ordering between the tasks only belonging to τ
(B∗)
k but

brings no impact on the priority dominance relation between

τ
(A∗)
k and τ

(B∗)
k . The following lemma shows that the TFP-

specific DA-LC technique is then applicable to τ
(A∗)
k .

Lemma 3: Under SPDF, the amount of execution of jobs

of tasks in τ
(A∗)
k in an interval of length l is maximized when

there are at most m− 1 carry-in jobs of tasks in τ
(A∗)
k .

Proof: By the definition of τ
(A∗)
k , tasks in τ

(A∗)
k have

higher priority than any other task in τ
(B∗)
k (= τ \ τ (A∗)

k ).

Therefore, the execution of jobs of tasks in τ
(A∗)
k is not

affected by any other job of tasks in τ
(B∗)
k .

Suppose that there are at least m carry-in jobs of tasks in

τ
(A∗)
k in [t, t + l). Then, exactly m jobs of tasks in τ

(A∗)
k

are executed in [t−1, t) regardless of jobs of tasks in τ
(B∗)
k .

Since at most m jobs can be executed in [t+ l−1, t+ l), the

amount of execution of jobs of tasks in τ
(A∗)
k will increase or

stay if we shift the interval of interest as [t−1, t+l−1). This

shift will be repeated until there are at most m− 1 carry-in

jobs of tasks in τ
(A∗)
k , and then the amount of execution of

jobs of tasks in τ
(A∗)
k in the final interval upper-bounds that

in the original interval.

In order to apply the TFP-specific DA-LC technique, we

need to consider two sub-cases further for calculation of

I∗i,k: whether a carry-in job of τi exists or not. If τi ∈ τ
(A1)
k

has its carry-in job in an interval between the release time

and deadline of a job of τk, I∗i,k is upper-bounded by the

maximum execution of jobs of τi in an interval of length

Dk (denoted by WCI
i (Dk)) [6], where

W CI
i (l) =

⌊
l +Di − Ci

Ti

⌋
· Ci +min

(
Ci, (l +Di − Ci) mod Ti

)
.

(5)

Such a pattern of the maximum execution occurs when the

first job of τi is executed as late as possible, and thereafter

other jobs are scheduled immediately as shown in Fig. 3(a).

On the other hand, if τi ∈ τ
(A1)
k has no carry-in job in the

interval, I∗i,k is upper-bounded by WNC
i (Dk), the maximum

execution of non-carry-in jobs of τi in an interval of length

Dk [8], where

WNC
i (l) =

⌊
l

Ti

⌋
· Ci +min

(
Ci, l mod Ti

)
, (6)

in which all jobs are released and scheduled as soon as

possible as shown in Fig. 3(b). Note that WCI
i (l) ≥WNC

i (l)
holds for any l > 0.

Type A2. We then consider another case where τi ≺ τk
(Type A2). In this case, τk has no interference from τi, and

thereby we have I∗i,k = 0.
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l 

(a) WCI
i (l)

l 

(b) WNC
i (l) (c) WNC

i (Di + Pk − Pi)

Figure 3. The worst-case patterns of interference for different cases

Type B. Now, we derive an upper-bound of I∗i,k when

τi belongs to τ
(B)
k . For Jg

i of τi ∈ τ
(B)
k to interfere with

(have higher-priority than) Jh
k , rgi + Pi ≤ rhk + Pk should

be satisfied, implying rgi − rhk ≤ Pk − Pi. Therefore, the

amount of higher-priority execution of jobs of τi than a job

of τk is maximized when the pseudo-deadline of a job of τi
is the same as that of the job of τk, i.e., when the release

times of a job of τi and the job of τk are aligned apart

from Pk − Pi as shown in Figure 3(c). Then, I∗i,k is upper-

bounded by WNC
i (Di+Pk−Pi). Note that this upper-bound

is pessimistic when Pk − Pi + Ci ≥ Dk in that the upper-

bound is larger than WCI
i (Dk), which is an upper-bound of

the execution of jobs of τi in an interval of length Dk in

any case. Therefore, we use the minimum of the two upper-

bounds for the upper-bound on I∗i,k.

Considering we use Eq. (4) for the schedulability test

of SPDF, min
(
I∗i,k, Dk − Ck + 1

)
under SPDF is upper-

bounded as follows:

ISPDF
i,k � min

(
I∗i,k, Dk − Ck + 1

)
under SPDF ≤⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I
(A2)
i,k � 0, if Pk − Pi ≤ −Di (i.e., Type A2) ,

I
(A1)
i,k � min

(
W CI

i (Dk), Dk − Ck + 1
)
,

if Pk − Pi ≥ Dk (i.e., Type A1) & with carry-in,

Î
(A1)
i,k � min

(
WNC

i (Dk), Dk − Ck + 1
)
,

if Pk − Pi ≥ Dk (i.e., Type A1) & no carry-in,

I
(B)
i,k � min

(
WNC

i (Di + Pk − Pi),W
CI
i (Dk), Dk − Ck + 1

)
,

if −Di < Pk − Pi < Dk (i.e., Type B).

(7)

Then, since I
(A1)
i,k ≥ Î

(A1)
i,k holds, a safe schedulability test

of SPDF can be derived with the use of I
(A1)
i,k as an upper-

bound on min
(
I∗i,k, Dk − Ck + 1

)
for τi ∈ τ

(A1)
k . Finally,

employing Lemma 3 with Eq. (7), we derive a schedulability

test of SPDF in the following theorem.

Theorem 2: A task set τ is schedulable under SPDF
with given priority assignment {Pi}τi∈τ on a multiprocessor

composed of m identical processors if for each task τk the

following condition holds:

∑
τi∈τ\{τk}

ISPDF
i,k < m · (Dk − Ck + 1), (8)

where the LHS of Eq. (8) is upper-bounded by

∑
τi∈τ

(A∗)
k

Î
(A1)
i,k +

∑
m-1 largest τi∈τ

(A∗)
k

(
I
(A1)
i,k − Î

(A1)
i,k

)

+
∑

τi∈τ
(A1)
k

\τ(A∗)
k

I
(A1)
i,k +

∑
τi∈τ

(B)
k

I
(B)
i,k . (9)

Proof: By Lemma 2, τ is schedulable under SPDF if

Eq. (8) holds. We now prove that the LHS of Eq. (8) is

upper-bounded by Eq. (9).

As shown in Eq. (7), ISPDF
i,k when τi belongs to τ

(A1)
k ,

τ
(A2)
k and τ

(B)
k is upper-bounded by I

(A1)
i,k , I

(A2)
i,k (= 0) and

I
(B)
i,k , respectively. Considering any task in τ

(A1)
k \ τ

(A∗)
k

belongs to τ
(A1)
k , the following inequality holds.

∑

τi∈τ
(A1)
k \τ (A∗)

k

ISPDF
i,k +

∑

τi∈τ
(A2)
k

ISPDF
i,k +

∑

τi∈τ
(B)
k

ISPDF
i,k

≤
∑

τi∈τ
(A1)
k \τ (A∗)

k

I
(A1)
i,k + 0 +

∑

τi∈τ
(B)
k

I
(B)
i,k (10)

Since τ \ {τk} = τ
(A∗)
k ∪ (

τ
(A1)
k \ τ (A∗)

k

) ∪ τ
(A2)
k ∪ τ

(B)
k ,

the remaining step is to prove that
∑

τi∈τ
(A1)
k \τ (A∗)

k

ISPDF
i,k

is upper-bounded by the first two terms in Eq. (9).

By the definition of interference, a job can interfere with

another job only when the interfering job is executed; more

formally, the amount of interference of τi on τk in an interval

is upper-bounded by the amount of execution of jobs of τi in

the interval. Therefore, the maximum amount of interference

of τi on τk among all intervals of length Dk is also upper-

bounded by the maximum amount of execution of τi among

all intervals of length Dk. Using this relationship with

incorporating Lemma 3, we conclude that
∑

τ
(A∗)
k

ISPDF
i,k is

upper-bounded by the amount of execution of jobs of tasks

in τ
(A∗)
k in an interval of length Dk when there are at most

m− 1 carry-in jobs of tasks in τ
(A∗)
k .

Since we do not know which tasks in τ
(A∗)
k have their

carry-in jobs, we choose m− 1 tasks in τ
(A∗)
k , which have

the m−1 largest difference between I
(A1)
i,k and Î

(A1)
i,k . Then,

we can safely upper-bound
∑

τi∈τ
(A1)
k \τ (A∗)

k

ISPDF
i,k by the

first two terms in Eq. (9), regardless of which tasks have

carry-in jobs.

Note that it requires O(n · log(n)) to calculate Eq. (9) for

a given τk due to sorting I
(A1)
i,k − Î

(A1)
i,k terms, where n is the
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number of tasks in τ . Therefore, the SPDF schedulability

test in Theorem 2 requires O(n2 · log(n)).
The following lemma shows the dominance relation be-

tween the SPDF schedulability test and other existing tests.

Lemma 4: The SPDF schedulability analysis in Theo-

rem 2 dominates the deadline-based EDF schedulability

analysis (EDF-DA) in [19], [21] and the deadline-based TFP

schedulability analysis with the so-called limited carry-in

technique (TFP-DA-LC) in [9].

Proof: The proof is straightforward. If we set Pi to Di

for every τi ∈ τ , SPDF is the same as EDF and our SPDF
schedulability analysis is equivalent to EDF-DA. Also, if we

set Pi, ∀τi ∈ τ according to Lemma 1, SPDF is the same

as TFP with the corresponding priority assignment and the

SPDF schedulability analysis is equivalent to TFP-DA-LC.

Note that Example 3.1 is deemed schedulable under

SPDF scheduling according to Theorem 2, but by neither

EDF-DA nor TFP-DA-LC with every possible priority as-

signment.

V. OPTIMAL PSEUDO-DEADLINE ASSIGNMENT

As mentioned previously, this paper considers the pseudo-
deadline assignment problem that, given a task set τ , deter-

mines the pseudo-deadline Pi of every task τi ∈ τ such

that the task set is deemed schedulable according to the

SPDF schedulability test given in Theorem 2. In this section,

we first discuss the intuition behind the OPA algorithm for

TFP scheduling and then extend such intuition towards JFP

scheduling, presenting an optimal pseudo-deadline assign-

ment algorithm.

TFP/OPA. The OPA algorithm [4] aims at assigning a

priority to each individual task through iterative priority as-

signment such that an entire task set τ is deemed schedulable

by some given OPA-compatible2 schedulability test X under

TFP scheduling.

In the k-th iteration step, the task set τ is divided into

two disjoint subsets: A(k) and R(k), where

A(k) denotes a subset of tasks whose priorities have

been assigned before the k-th step, and

R(k) denotes a subset of remaining tasks whose priori-

ties must be assigned from the k-th step onwards.

A task τe is said to be TFP-eligible3 in the k-th step if τe
is deemed schedulable by test X under the assumption that

τe is assigned a priority strictly higher than all the assigned

tasks τa ∈ A(k) but strictly lower than all the remaining

2Schedulability tests are OPA-compatible if for any given task τi, its
schedulability is insensitive to relative ordering of its higher (and lower)
priority tasks and its schedulability is monotonic to its priority (i.e., if
it is schedulable (or unschedulable) at a certain priority, then it remains
schedulable (or unschedulable) at a higher (or lower) priority.).

3We may use only ”eligible” omitting ”TFP-” (and ”JFP-” later) for
simplicity when no ambiguity arises.

tasks τr ∈ R(k). During the k-th step, OPA then seeks to

select one of the eligible tasks for priority assignment. For

concise presentation, we introduce additional notations as

follows.

E(k) denotes a subset of tasks that are eligible in the

k-th step, and

S(k) denotes a subset of eligible tasks that is selected for

priority assignment in the k-th step; S(k) ⊆ E(k)4.

Let us discuss the key intuition behind how TFP/OPA

works. First, one of the most important properties is that

the algorithm builds a solution incrementally without back-

tracking. Once a task τs is selected in an iteration step k, the

task has no effect on priority assignment in the next iteration

steps. This is because the task τs is assigned a priority

strictly lower than all the remaining tasks τr ∈ R(k + 1),
imposing no interference on them under Type A2 relation.

Second, suppose there exists only one eligible task τe in

step k. Then, OPA must find it through an exhaustive search

of all the remaining tasks R(k), which takes linear time.

Third, suppose there are multiple eligible tasks in the k-th

step. Then, it does not matter which eligible task is selected

by OPA in the k-th step, because all the other eligible tasks

will remain eligible in the next steps and will be eventually

selected for priority assignment in a later step. This follows

from the fact that interference under Type A1 relation for a

task is only smaller when it is selected in a later iteration

step (that is, assigned a higher priority). This way, OPA is

optimal for finding a priority assignment for a given task set

with respect to some given test X under TFP scheduling.

Applicability of OPA to JFP case. Let us discuss the

applicability of the OPA algorithm to the JFP category. One

of the key differences between TFP and JFP scheduling

is that Type B inter-task relation can hold only under JFP

scheduling. Targeting TFP scheduling, OPA is not designed

to explore such Type B relation in the process of priority

assignment, and this is a critical factor in extending OPA

towards JFP scheduling.

To illustrate this, let us consider an example. Suppose

there is no TFP-eligible task in the k-th iteration step. That

is, we assume that for each remaining tasks τj ∈ R(k), there

is no priority assignment to make τj schedulable by test X

under the assumption that τj has only Type A1 relation with

all the other remaining tasks. This gives

∀τj ∈ R(k),
∑

τr∈R(k),r �=j

I
(A1)
r,j > m(Dj − Cj + 1), (11)

In order to emphasize the benefit of Type B inter-task

relation over Type A, we make a further assumption in

this example that there exist a couple of tasks, τp and τq ,

such that they can be deemed schedulable by the same test

X when they have Type B relation with each other. This

situation can be specified as follows.

4We note that TFP/OPA always selects a single task for S(k).
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∑
τr∈R(k),r �=p,r �=q

I(A1)
r,p + I(B)

q,p ≤ m(Dp − Cp + 1), and

∑
τr∈R(k),r �=p,r �=q

I(A1)
r,q + I(B)

p,q ≤ m(Dq − Cq + 1). (12)

In the above example, there exists a possible scenario to

assign job-level priorities to the two tasks τp and τq that

deems them schedulable. However, OPA cannot find such a

scenario since it seeks to find a single task in every iteration

step. This motivates the design of new priority assignment

algorithms for JFP scheduling.

Optimal Pseudo-Deadline Assignment. We now present

the Optimal Pseudo-Deadline Assignment (OPDA) algo-

rithm, generalizing the TFP/OPA algorithm towards JFP

scheduling. Following the key intuition behind TFP/OPA,

our OPDA algorithm (described in Algorithms 1 and 2)

also performs pseudo-deadline assignment iteratively. In

particular, it partitions the task set τ into two disjoint sets,

A(k) and R(k), in each iteration step k, preserving Type

A inter-task relation between the two disjoint sets. As in

TFP/OPA, enforcing Type A relation between A(k) and

R(k) allows OPDA to construct a solution incrementally

as well, separating individual iteration steps. On the other

hand, the main differences between TFP/OPA and OPDA

lie in a couple of factors, including how to enforce Type A

relation between A(k) and R(k) and how many tasks can

be selected in S(k) for pseudo-deadline assignment in the

k-th step.

As previously mentioned, implementing Type A relation

between A(k) and R(k) is key to establishing an important

property of incremental priority (and pseudo-deadline) as-

signment. In the TFP case, such Type A relation between

those two subsets is automatically implemented simply by

assigning different priorities to different tasks. However, this

is no longer valid in the JFP case, requiring a different

strategy for the separation between them. Under SPDF

scheduling, we note that if two tasks satisfy the condition

derived in Lemma 1, those tasks have Type A relation.

Thereby, we can enforce Type A relation between A(k)
and R(k) by assigning relative pseudo-deadlines such that

both all tasks τa ∈ A(k) and all tasks τr ∈ R(k) satisfy

Pa ≤ Pr −Dr.

In addition, OPDA is designed to explore Type B rela-

tion in the process of pseudo-deadline assignment. Unlike

TFP/OPA that always seeks to assign a priority to a single

task in each iterative step, OPDA has flexibility in finding

different numbers of tasks for determining S(k) in a single

step and enforces Type B relation for the tasks in the subset

S(k).
As described in Algorithm 1, OPDA iteratively finds a

subset S(k) in each step k until there is no more remaining

task (Lines 2-10 in Algorithm 1). For each step k, it invokes

a function FIND-SUBSET(k,i) to find the subset S(k) of

the smallest possible size i in the k-th step (Line 4 in Algo-

Algorithm 1 Optimal Pseudo-Deadline Assignment

Require: k ← 0, ZH(1) ← 0, R(1) ← τ
1: repeat
2: k ← k + 1
3: for each i in {1, · · · , |R(k)|} do
4: if FIND-SUBSET(k,i) = success then
5: break (continue outer loop)
6: end if
7: end for
8: return unschedulable
9: until R(k) is empty

10: return schedulable

Algorithm 2 FIND-SUBSET(k, i)

1: Sk ← a set of all i-combinations of R(k)
2: for each combination S(k) in Sk do
3: maxD(k) ← max{Ds} for all τs ∈ S(k)
4: sumD(k) ← ∑

Ds for all τs ∈ S(k)
5: ZL(k + 1) ← ZH(k) + sumD(k)
6: ZH(k + 1) ← ZL(k + 1) +maxD(k)
7: R ← R(k) \ S(k)
8: for each task τr ∈ R do
9: Pr ← ZH(k + 1)

10: end for
11: Pk ← a set of all i-permutations with repetition from a set

{ZH(k), ZH(k)− 1, · · · , ZL(k + 1) + 1, ZL(k + 1)}
12: for each element < p1, p2, · · · , pk > in Pk do
13: j ← 1
14: for each task τs ∈ S(k) do
15: Ps ← pj
16: j ← j + 1
17: end for
18: if an entire task set τ is deemed schedulable according

to schedulability test X then
19: R(k + 1) ← R(k) \ S(k)
20: return success
21: end if
22: end for
23: end for
24: return fail

rithm 1). As described in Algorithm 2, FIND-SUBSET(k,i)
basically considers all combinations of i tasks from all the

remaining tasks R(k) (Line 2 in Algorithm 2). For each

combination of i tasks, it explores any possibility that such

i tasks are deemed schedulable according to Theorem 2

Figure 4. Pseudo-deadline buffer zone in iteration step k
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under the assumption that they all have Type A1 relation

with each task τa ∈ A(k), Type A or B relation with each

other, and Type A2 relation with all the other remaining

tasks τr ∈ R(k).
To enforce Type A relation between A(k) and

R(k), OPDA employs a pseudo-deadline buffer zone
[ZH(k), ZL(k)] between A(k) and R(k) such that no task

is assigned a pseudo-deadline inside the buffer zone5 (see

Figure 4). (Lines 3-6 in Algorithm 2):

ZL(k)− ZH(k) = max
τr∈A(k)

Dr
def.
= maxD(k)

ZH(k)− ZL(k + 1) =
∑

τr∈R(k)

Dr
def.
= sumD(k)

Following the principle behind Type A relation described

in Lemma 1, pseudo-deadlines are assigned such that all

the assigned tasks τa ∈ A(k) have pseudo-deadlines lower

(i.e., numerically greater) than ZL(k) and all the remaining

tasks τr ∈ R(k + 1) will be assigned pseudo-deadlines

higher (i.e., numerically smaller) than ZH(k + 1) (Line

8-9 in Algorithm 2). We note that the buffer zone size

of maxD(k) is large enough to enforce the separation

of A(k) and R(k) under Type A relation. Then, OPDA

explores all the possible pseudo-deadline assignment of all

the eligible tasks τs ∈ S(k) within [ZL(k + 1), ZH(k)] in

an exhaustive manner (Lines 11-22 in Algorithm 2). It is

worth noting that sumD(k) is large enough to explore all

the possible combinations of pseudo-deadlines for finding

any schedulable Type A or B relations between individual

tasks within S(k). This is because only the relative values of

pseudo-deadline matter when such relations are determined.

If the algorithm succeeds in finding any eligible subset of

size i, it goes on to the next iteration step. Otherwise, it tries

finding an eligible subset of a different subset size; one size

bigger.

Theorem 3: The Optimal Pseudo-Deadline Assignment

(OPDA) algorithm is an optimal pseudo-deadline assignment

policy with respect to the SPDF schedulability test of

Theorem 2.

Proof: We first extend the notion of eligible to the JFP

case. A subset of tasks Ω is JFP-eligible in a step k if

there exists a schedulable pseudo-deadline assignment for

all tasks τe ∈ Ω under the assumption that τe has Type A or

B relation with all the other tasks within the same eligible

subset Ω, but has only Type A2 relation with all the other

remaining tasks τr ∈ R(k).
We then consider two cases depending on how many

eligible subsets exist: (1) only one and (2) more than one.

First, suppose there is only one eligible subset Ω(k) in a step

5In the OPDA algorithm, the pseudo-deadline buffer zone is initialized
as ZH(1) = 0. Note that ZL(0) is not used. We also note that since Type
A relation is determined by the relative difference between pseudo-deadline
values, ZH(1) can be initialized to any arbitrary value.

k. Since the algorithm tries to find Ω(k) for all possible size

of i from 1 to R(k) (Line 3 in Algorithm 1), it considers all

combinations of i tasks with the given size of i (Line 2 in

Algorithm 2) and explores all the possible pseudo-deadline

assignment of each combination exhaustively (Line 11 in

Algorithm 2). Thereby, it fails to find an eligible subset of

i, for all 1 ≤ i ≤ R(k), only if there is no eligible subset

in the k-th step. Therefore, the algorithm always find Ω(k),
whenever it exists.

Second, given the optimality of OPDA when there is

only one eligible subset, we then investigate whether OPDA

can always make an optimal decision even when there are

multiple different eligible subsets. For the purpose of simple

presentation, let us assume that there exist two eligible

subsets, Ω1 = {τi, τj} and Ω2 = {τi, τp, τq}, in the step k.

We also assume that OPDA chooses Ω1 for pseudo-deadline

assignment in the same step. We denote Iz(k) as a bound on

the total interference that a task τz receives in the k-th step

according to the SPDF schedulability test of Theorem 2. By

definition, for each task τz ∈ Ω2, Iz(k) ≤ m(Dz−Cz +1).
Similar to the TFP/OPA case, the subset of remaining tasks

only becomes smaller as the algorithm proceeds to the next

iteration steps, yielding R(k′) ⊂ R(k), where k < k′. Here,

we consider two sub-cases depending on whether the LC-

technique is applied or not.

When the LC technique is not used, we wish to show that

the total interference bound Iq(k
′) that task τq receives in

the k′-th step, will become only smaller than that in the k-

th step. We note that since Ω1 = {τi, τj} is selected in the

k-th step, it immediately follows that {τi, τj} /∈ R(k′) and

τi /∈ Ω2 in the k′-th step. And this only decreases Iq(k
′),

leading to the following inequality.

Iq(k
′) ≤ Iq(k) ≤ m(Dq − Cq + 1). (13)

The above inequality shows that task τq can be deemed

schedulable if it can keep Type B relation with task τp, and

Type A2 relation with all the other remaining tasks. That is,

it implies that once a task belongs to an eligible subset in

step k, it continues to belong to an eligible subset in all steps

k′(k < k′). This allows us to conclude that it does not matter

which eligible subset OPDA selects out of the multiple ones,

because any task that is not selected will continue to be in

some eligible subset in all future iterations.

We now consider the effect of the LC technique. Towards

this, let us make a further assumption to Ω1 and Ω2 that the

task τj has Type A1 relation with the task τq (τj � τq), and

the task τp has Type A1-LC relation (Type A1 relation with

the LC technique applied) with τq (τp �LC τq) in the k-th

step. In other words, suppose that τj incurs non-zero carry-in

interference on τq , but τp has zero carry-in interference on τq
in step k from the viewpoint of the SPDF analysis. We then

wish to show that Eq. (13) holds even though OPDA selects

Ω1 for pseudo-deadline assignment in step k. In this case, it

is worth noting that τp and τq , which are not selected in step
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k, can have a different relation in a later step k′ (k < k′)
such that τp has Type A1 (instead of A1-LC) relation with

τq in step k′. This way, τp can impose a larger interference

on τq in step k′, compared to step k. Since we have so far

assumed that the total interference bound that τq receives

will remain the same or become smaller as iteration goes

on, we need to investigate this situation carefully.

Note that the LC analysis technique keeps carry-in for

m-1 tasks with the largest difference between I
(A1)
i,k and

Î
(A1)
i,k and excludes carry-in for all the other tasks within

the same Type A1 relation group. From the assumption that

τj has non-zero carry-in interference but τp has no carry-in

interference in step k, we can see that τj incurs a larger

carry-in interference on τq than τp does, that is,

I(A1)
p,q − Î(A1)

p,q ≤ I
(A1)
j,q − Î

(A1)
j,q . (14)

Then, the total interference bound given on task τq in step

k can be described as follows.

∑
τr∈R(k),r �=i,j,p,q

I(A1)
r,q + I

(A1)
j,q + I

(B)
i,q + Î(A1)

p,q ≤ m(Dq − Cq + 1).

(15)

Then, the total interference bound that τq receives in step

k′(k < k′) can be represented as follows.

∑
τr∈R(k′),r �=i,j,p,q

I(A1)
r,q + I(A1)

p,q

≤
∑

τr∈R(k′),r �=i,j,p,q

I(A1)
r,q + Î(A1)

p,q + I
(A1)
j,q − Î

(A1)
j,q by Eq. (14)

≤
∑

τr∈R(k),r �=i,j,p,q

I(A1)
r,q + Î(A1)

p,q + I
(A1)
j,q since R(k′) ⊂ R(k)

≤m(Dq − Cq + 1). by Eq. (15) (16)

The above inequality indicates that even though the in-

terference that τq receives from an individual task can

increase over iteration steps due to the LC technique, the

total interference on task τq still becomes smaller. This

confirms the optimality of OPDA when there are multiple

eligible subsets, even if the DA-LC technique is used in the

schedulability test. This completes the proof.

Complexity. We denote the number of tasks in a task

set by n. At each iteration step k in Algorithm 1, OPDA

tries to find a subset S(k) of size i. For each size i in

1 ≤ i ≤ R(k) ≤ n, it considers all combinations of i
tasks, and the number of combinations is

(
n
i

)
. Then, for

each combination of i tasks, it explores all permutations

of possible relative pseudo-deadlines, and the number of

permutations is bounded by i ·maxD(k)i. For each pseudo-

deadline assignment, it checks the SPDF schedulability test

in Theorem 2 that requires O(n2 ·log(n)). Therefore, OPDA

requires O(nn+2 · log(n)).

VI. HEURISTIC PSEUDO-DEADLINE ASSIGNMENT

The OPDA algorithm presented in the previous section

is optimal with respect to the given schedulability test but

its computational complexity is exponential in the number

of tasks. Hence, this section presents heuristics with low

computational complexity to find sub-optimal solutions.

As described previously, OPDA exhaustively searches an

eligible subset of different size k in each iteration step t,
from one to the number of remaining tasks (i.e., 1 ≤ k ≤
|R(t)|). We investigate tradeoff between performance and

complexity for OPDA through different subset size. We let

OPDA-k denote the OPDA algorithm that finds an eligible

subset of size up to k only. We note that TFP/OPA and

OPDA are specializations of OPDA-k, where k = 1 and

k = |τ |, respectively.

We then also consider a heuristic algorithm, called LSF

(Largest Slack First). The intuition behind this algorithm

is that increasing the pseudo-deadline of a task τs increases

only the total interference bound on task τs, but decreases the

interference bounds of all the other tasks τr. This increases

the possibility of each task τr being schedulable, albeit at

the expense of task τs.

In this paper, we let σj denote the slack of a task τj and

define it as follows.

σj = (Dj − Cj + 1)−
⌊∑

i�=j I
SPDF
i,j

m

⌋
. (17)

The LSF algorithm works as follows. It repeats the follow-

ings steps until τ is deemed schedulable or it reaches a

certain number of iterations. During an iteration, it first finds

a task τ∗s with largest slack among all the remaining tasks.

Then, it decreases its slack σ∗
s by increasing its pseudo-

deadline P ∗
s until the slack σ∗

s does not decrease any more

or the task τ∗s is deemed unschedulable. We note that the

relative pseudo-deadline of a task τj can be randomly set for

the calculation of σj at the first iteration. We observe that

the initial value of relative pseudo-deadline rarely influences

the performance of the LSF algorithm.

We propose a heuristic approach, called HPDA-k (Heuris-

tic Pseudo-Deadline Assignment) combining OPDA-k and

LSF. Given a task set τ , HPDA-k employs OPDA-k first to

find a pseudo-deadline assignment that makes τ schedulable.

If OPDA-k succeeds in finding such a schedulable assign-

ment, HPDA-k stops here. Otherwise, HPDA-k employs

LSF over the remaining tasks from OPDA-k to find pseudo-

deadline assignments that make τ schedulable.

Complexity. HPDA-k employs OPDA-k that finds an

eligible subset of size up to k only. Therefore, it requires

O(nk+2 · log(n)).
VII. EVALUATION

This section presents simulation results to evaluate our

pseudo-deadline assignment algorithms and compare their

performance to existing TFP and JFP algorithms. As a main
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Figure 5. Schedulability ratios of various pseudo-deadline assignment
algorithms

metric for comparison we use the schedulability ratio, which

is defined as the number of task sets deemed schedulable by

an algorithm to the total number of generated task sets.

Figure 5. We generate task sets based on a technique

proposed earlier [23], which has also been used in many

previous studies [21], [13]. We have a density distribution

parameter for exponential distribution of individual density:

0.1, 0.3, 0.5, 0.7, 0.9. For each task τi, Di is uniformly

chosen in [1000, 2000], Ti is uniformly chosen in [Di,

2000], and Ci is chosen based on the exponential density

distribution parameter. For each exponential density distri-

bution parameter, we generate 1,000 task sets with m = 4
where m is the number of processors. Initially, we generate

a set of m+ 1 tasks, and create a new set by adding a new

task into the old set until the system density becomes greater

than m.

Figure 5 compares the schedulability ratios of three

pseudo-deadline assignment schemes (TFP/OPA, OPDA-2,

and HPDA-2) with DA, DA-LC, or RTA (response time anal-

ysis) [6] analysis, relative to the case of TFP/OPA with DA-

LC. Here, HPDA-2 was allowed to run the LSF algorithm up

to 1,000 times for each individual task set until a schedulable

pseudo-deadline assignment is found. The complexity of

OPDA grows exponentially as the subset size k increases,

so OPDA-2 and HPDA-2 is only shown in Figure 5. A

more detailed comparison between OPDA-k and HPDA-k
with different subset size k will be presented later in this

section. As the value of the exponential distribution param-

eter increases, it generates task sets with a smaller number

of tasks and tasks are more likely to have larger densities.

In the figure, the effect of the LC analysis can be noticed

by the difference between OPDA-2(DA) and OPDA-2(DA-

LC). Such a difference is significant when the exponential

parameter is small (i.e., when the number of tasks is large).

This is because a larger number of tasks can get benefit from

the limited carry-in feature. The difference between OPDA-

2(DA-LC) and TFP/OPA(DA-LC) shows the improvement

of allowing Type B inter-task priority relation in priority

(pseudo-deadline) assignment, compared to the TFP/OPA

case where only Type A relation is granted. Such an im-

provement grows when the exponential parameter increases

(i.e., when tasks have higher densities). This is because there

are more cases where tasks with higher densities cannot

accept full interference from others under Type A relation,

but can accommodate some partial interference from each

other under Type B relation. Finally, the contribution of the

LSF algorithm is shown by the difference between OPDA-

2(DA-LC) and HDPA-2(DA-LC). Due to its significant con-

tribution, HPDA-2(DA-LC) can outperform TFP/OPA (DA-

LC) by 5-21% over all exponential distributions. The figure

also shows that TFP/OPA(DA-LC) significantly outperforms

EDF(RTA), which is consistent with the results in [9], and

so does HPDA-2(DA-LC).

Schedulability ratio Running
relative to optm (%) time (ms)

OPDA-1 86.6 4.2 ×102

HPDA-1 91.6 4.5 ×103

OPDA-2 97.6 6.2 ×102

HPDA-2 98.2 5.9 ×103

OPDA-3 99.4 5.7× 103

HPDA-3 99.6 9.1× 103

OPDA-4 99.9 1.7× 105

HPDA-4 99.9 1.7× 105

OPDA-5 100.0 4.9× 106

HPDA-5 100.0 4.9× 106

optm 100.0 6.0× 106

Table I
TRADEOFF BETWEEN SCHEDULABILITY AND RUNNING TIME OF OPDA

VIA DIFFERENT SUBSET SIZE k

Table I. Our second simulations were performed to in-

vestigate the tradeoff between performance and complexity

of our OPDA algorithm through different subset size k. The

complexity of OPDA grows exponentially as the number

of tasks (n) and/or the range of Di increase, becoming

easily intractable. Thus, we generated task sets with different

simulation parameters from those for Figure 5, with a

smaller number of tasks (n = 5) and a smaller range of

deadlines (Ti = Di uniformly chosen in [1, 10]). We then

ran simulations on 10,000 task sets with m = 2. In the

simulations, an exhaustive search (optm) was conducted to

find optimal solutions and serves as a baseline to compare

the results of OPDA-k, for all 1 ≤ k ≤ 5. Table I shows the

schedulability ratio and running time of OPDA-k relative

to optm. For example, OPDA-1 (HPDA-1) finds 86.8%

(91.6%) of all schedulable task sets with a running time four

(three) orders of magnitude shorter than optm. We note that

OPDA-1 is equivalent to TFP/OPA, and in this case, OPDA-

5 and HPDA-5 produce the same optimal result as optm.

This table also shows that as k increases, the schedulability
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ratio gap between optm and OPDA-k rapidly decreases at

the expense of an exponential increase in running time. This

implies that the subset size k is a good control knob to

balance the schedulability vs. complexity tradeoff of the

OPDA algorithm, establishing a good basis for our heuristic

approach HPDA-k.

VIII. CONCLUSION

The motivation for our work was to advance JFP schedul-

ing techniques by adapting high-performing TFP scheduling

techniques. One of the main difficulties in applying TFP-

specific techniques to JFP scheduling was a perception that

JFP scheduling can support tasks only with Type B priority

dominance relations, while TFP-specific techniques can sup-

port Type A relation only. To overcome this, we identified

a condition under which JFP scheduling allows a subset of

tasks to behave under Type A relation. Building upon it,

this paper has introduced a JFP scheduling algorithm, called

SPDF, that is better than all TFP scheduling algorithms

and well-known JFP algorithms when pseudo-deadlines are

properly assigned. This paper has generalized the high-

performing LC analysis technique and the OPA algorithm,

which are highly TFP-oriented, for SPDF.

In this paper, we have focused on understanding a funda-

mental difference between TFP and JFP scheduling. Based

on the understanding, we have improved priority assignment

algorithms and schedulability analysis for JFP scheduling

by generalizing TFP techniques to JFP. However, we also

believe JFP scheduling techniques can be further enhanced

when JFP-centric properties are appropriately exploited,

which is for our future research.
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