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ABSTRACT

In distributed soft real-time systems, maximizing the aggregate

quality-of-service (QoS) is a typical system-wide goal, and ad-

dressing the problem through distributed optimization is challeng-

ing. Subtasks are subject to unpredictable failures in many prac-

tical environments, and this makes the problem much harder. In

this paper, we present a robust optimization framework for maxi-

mizing the aggregate QoS in the presence of random failures. We

introduce the notion of K-failure to bound the effect of random

failures on schedulability. Using this notion we define the concept

of K-robustness that quantifies the degree of robustness on QoS

guarantee in a probabilistic sense. The parameter K helps to trade-

off achievable QoS versus robustness. The proposed robust frame-

work produces optimal solutions through distributed computations

on the basis of Lagrangian duality, and we present some implemen-

tation techniques. Our simulation results show that the proposed

framework can probabilistically guarantee sub-optimal QoS which

remains feasible even in the presence of random failures.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-

time and embedded systems; D.4.1 [Operating Systems]: Process

Management—Scheduling

General Terms

Algorithms, Design, Performance, Theory
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1. INTRODUCTION

Distributed real-time systems are typically comprised of several

nodes with processing capacity and several real-time tasks that ex-

ecute on these nodes. Each task, in turn, comprises of several sub-

tasks that have processing demands at nodes and are required to ex-

ecute in a pipelined fashion. These tasks often require guarantees

on end-to-end delays, with smaller delay implying a better quality-

of-service (QoS). For example, we consider delay-sensitive tasks

such as security monitoring and video conferencing in enterprise

security environment [3]. These tasks can be expressed as a set of

sequential subtasks in that sensor nodes monitor their circumfer-

ence and send raw data to their destination nodes through a set of

intermediate nodes, which process (filter and analyze the data, up-

date database [17]) and relay the data, for the purpose of security

or enterprise.

Soft real-time constraints can be conveniently modeled using

delay-sensitive utility functions (see for example [28]). Maximiz-

ing the collective utilities of tasks (aggregate QoS) is then a rea-

sonable system-wide goal, and achieving this inherently brings the

tasks into resource contention with each other. The end-to-end de-

lay of a task may be reduced by finishing its subtasks earlier, but

this increases interference to subtasks of other tasks that compete

for processing capacity on the same nodes. The end-to-end delay

of these other tasks may then increase, thereby reducing their util-

ity. It is therefore necessary to investigate the effects of finishing a

subtask earlier, both on end-to-end delay of the corresponding task

(across nodes) and on other subtasks that are scheduled within the

same node (across tasks). In other words, maximizing the system-

wide QoS inherently entails a global optimization approach.

In this paper, we control the finishing time of subtasks by assign-

ing local (artificial) deadlines to them and enforcing these deadlines

through node-level schedulability tests. We introduce a QoS op-

timization framework that uses global viewpoints to assign local

subtask deadlines (across nodes), taking into consideration node-

level schedulability (across tasks). Further, to benefit from many

advantages of distributed computation such as scalability, we de-

velop a distributed optimization framework based on Lagrangian

duality theory [6, 19]. This framework guarantees that the on-

line distributed computations eventually converge to a global op-

timum under certain conditions, including a failure-free assump-

tion. However, in many practical environments, subtasks are sub-

ject to random failures, such as transient hardware faults and net-

work medium errors. These failures embed uncertainty into the

timing attributes of subtasks; subtasks may need to be re-executed

in order to recover from these faults. Improper handling of such un-

certainty may result in fluctuations in the achieved system utility.
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Further, this unstable behavior may also invalidate the guarantee on

QoS provided by the optimization framework.

In this paper, our goal is to develop an online “robust” distributed

optimization framework that can provide guaranteed QoS under

random failures. In order to develop such a framework, we address

quite a few challenges: 1) how to derive the uncertainty set that

characterizes the effect of random failures on the ability of sub-

tasks to meet local deadlines (node-level schedulability), 2) how

to define a notion of robustness against the failures in these sys-

tems, and 3) how to incorporate this notion in the distributed opti-

mization framework, without violating the conditions imposed by

Lagrangian duality theory (namely, convexity of optimization con-

straints).

Contribution. The contributions of this paper are as follows.

We present a robust and distributed optimization framework that

guarantees QoS always stays over a lower bound, and this guaran-

tee remains valid (and therefore the framework is robust) in a prob-

abilistic sense even in the presence of random failures. To the best

knowledge of the authors, this is the first such framework for opti-

mizing the aggregate QoS in distributed real-time systems. Specif-

ically, we introduce the notion of K-failure (at most K concurrent

failures among all subtasks in a node) to bound the effect of random

failures on node-level schedulability. We also introduce a notion of

K-robustness to quantify the degree of robustness against such fail-

ures with a probability. This parameter K offers a tradeoff between

QoS guarantee and probabilistic robustness. Using this new metric

for robustness, we derive a robust optimization formulation that is

amenable to online distributed computations (Lagrangian duality).

Further, the node-level schedulability tests in this framework are

sustainable [4] with respect to the execution time of subtasks. That

is, the solution remains valid even if the actual execution time of a

subtask is smaller than its stated worst-case execution time or the

actual number of failures in a node is smaller than K. Lastly, we

discuss some implementation issues for the framework, and evalu-

ate its performance.

Related Work. Many studies have focused on the local subtask

deadline assignment problem, with a view to controlling end-to-

end delays [12, 21, 16]. These studies focus on how to divide the

deadline of a task into several pieces for its subtasks, but they have

lack of considering the resource contention in intermediate nodes

between subtasks from different tasks. There are some studies on

end-to-end delay analysis of distributed real-time systems [14, 15].

These studies focus on reducing the pessimism in calculating end-

to-end delays for pipelined streams of computations, but do not

consider occurrence of failure or maximizing QoS.

Convex optimization theory has been a popular tool to solve

many global optimization problems for several decades. Techniques

that find optimal solutions either in a centralized manner, or using

distributed computations (Lagrangian duality), have been devel-

oped [6, 19]. Many of these techniques have been applied to solve

the problem of guaranteeing end-to-end delays in a distributed real-

time system [10, 7, 31, 20]. Some of these techniques use cen-

tralized solutions to the optimization problem [10, 7, 31]. In ad-

dition to these techniques not scaling well in a distributed sys-

tem, either they are not robust to task failures [10, 7] or they pro-

vide only heuristic solutions [31]. Distributed solutions to this

optimization problem have been recently considered [20]. This

study assumes proportional share scheduling within nodes. Since

such a scheduling framework is not implementable, it must be ap-

proximated. However, any approximation of the scheduling frame-

work will invalidate the proposed analysis. Distributed optimiza-

tion has been applied to achieving QoS maximization through dy-

namic route and rate assignments in distributed real-time systems [24]

and through bandwidth allocation in wireless networks [13]. How-

ever, this study does not consider guaranteeing end-to-end delays

and robustness.

Robustness to variability in task worst-case execution time (WCET)

was first introduced in the context of fixed-priority preemptive unipro-

cessor scheduling [11]. More recently, robustness to uncertain in-

put parameters was considered in a distributed optimization prob-

lem [29]. Since this work does not consider how to map uncertainty

to node-level schedulability, it cannot be used to bound end-to-end

delay of real-time tasks. Therefore it cannot provide guaranteed

QoS for systems that are considered in this work. Feedback con-

trol techniques have been used to control node utilization against

uncertain WCET in distributed real-time systems [27]. Such ap-

proaches aim at enhancing system survivability, but do not provide

any guarantees on end-to-end delay of tasks.

Organization. Our paper is organized as follows: Section 2

describes the system model. Section 3 provides our distributed QoS

optimization framework, and Section 4 presents its robust counter-

part. Section 5 discusses some practical issues for implementation,

and Section 6 presents simulation results. Section 7 concludes with

future work.

2. SYSTEM MODEL

2.1 Task model
In this paper, we consider a distributed real-time system with VN

nodes and VT tasks. The nodes are numbered 1, . . . , VN such that

each node has a unique number, and we express a node numbered n

as Nn. Each task τi ∈ T sys is comprised of mi subtasks such that

each subtask executes on exactly one node. The kth subtask exe-

cuting on Nn is denoted as J (i,k,n); whenever n is irrelevant we

omit the third parameter completely. Adjacent subtasks J (i,k) and

J (i,k+1) execute in sequence in a pipe-lined fashion; J (i,k+1) be-

comes ready for execution when J (i,k) completes. We denote the

worst-case (maximum) execution time of subtask J (i,k) by C(i,k).

Each task τi is a sporadic task such that its first subtask J (i,1) is

released repeatedly with a minimum gap of Ti time units.

Let d(i,k) denote the maximum local delay (or response time)

that subtask J (i,k) experiences in its node; it is a time duration

from an instant at which it is released in the node to another instant

at which it finishes its execution. Then we denote the end-to-end

delay of a task τi by di, where di =
Pmi

k=1 d(i,k). We assume that

each task has its own utility function Ui, which is a function of its

end-to-end delay di. Utility functions can be viewed as characteriz-

ing different QoS levels. We consider concave and non-increasing

utility functions to capture that a greater QoS comes with a shorter

end-to-end delay and degradation of QoS gets more severe as delay

gets longer. The concave function is particularly good at capturing

a situation that degradation of QoS is smooth before a certain point

(i.e., a soft deadline), but becomes rapid after this point, as shown

in Figure 1. Typical examples of tasks subject to such soft dead-

lines include plot correlation and track maintenance of a coastal air

defense system [28]. In this paper, we consider utility functions to

be differentiable in order to incorporate them into the proposed op-

timization framework. If an original function is not differentiable

as shown in Figure 1(a), it can be approximated as the one shown

in Figure 1(b). We then define the system utility as
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(b) The differentiable function

Figure 1: Non-increasing concave utility functions

Usys =
X

τi∈T sys

Ui(di). (1)

Given a set of QoS-sensitive tasks as above, informally, our aim

is to provide QoS guarantees as much as possible. We capture it by

maximizing the system utility function Usys. Then our goal is to

bound the delay di of each task τi ∈ T sys that maximizes Usys.

However, computing this bound exactly in general distributed sys-

tems is computationally intractable [5, 22]. Hence we approximate

the bound on di as follows. For each subtask J (i,k), we define

a local (artificial) deadline D(i,k) such that D(i,k) ≤ Ti. We de-

rive conditions which guarantee that every occurrence of each sub-

task finishes by its local deadline, i.e., we enforce the condition

d(i,k) ≤ D(i,k) for each subtask J (i,k). Then we can upper bound

di as

di =

miX
k=1

d(i,k) ≤

miX
k=1

D(i,k). (2)

Thus the problem of bounding di for each task τi that maximizes

Usys, is transformed to the problem of finding D(i,k) for each sub-

task J (i,k) that maximizes Usys. In the Section 2.3, we derive

conditions that enforce d(i,k) ≤ D(i,k) for each subtask J (i,k).

Note that it is essential to decompose the end-to-end delay into

delays (and therefore artificial deadlines) for individual subtasks,

because of the limitations of existing real-time scheduling theory1.

These local deadlines enable us to optimize the global system util-

ity while still maintaining the schedulability of individual nodes.

2.2 Scheduling model
In distributed real-time systems, there are two kinds of resource

scheduling to consider: scheduling within nodes (CPU schedul-

ing) and network scheduling across nodes. We consider prioritized,

preemptive EDF scheduling for nodes, as it is an optimal dynamic-

priority uniprocessor scheduler [18].

Network scheduling involves transmission of tasks from one node

to another, enforcing the sequential constraint (pipelined execution)

between successive subtasks. When a subtask J (i,k,n) finishes its

execution on node Nn, it generates a network subtask that must

be transmitted over the network to another node No. This network

1Current real-time scheduling theories are mostly developed for
node-level schedulability analysis, and the system-level analysis is
generally achieved by assembling individual node-level analysis re-
sults. Therefore, it is hard to directly support a task model in which
1) a series of subtasks sequentially go though multiple nodes with
one end-to-end deadline, and 2) the sets of nodes which subtasks
of different tasks pass through are different.
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(a) An original task set
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��

������
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(b) A unified task set

Figure 2: Representation of a task set

subtask signals the release of subtask J (i,k+1,o) in node No and

may also carry data from subtask J (i,k,n) to subtask J (i,k+1,o).

Since network subtasks generated by many different tasks may be

simultaneously transmitting to node No, there is a need to schedule

these subtasks. This network scheduling problem can be trivially

mapped to a node scheduling problem [24] as shown in Figure 2.

In the figure, two tasks τ1 and τ2 generate network subtasks that

may simultaneously transmit to node N4. This can be viewed as

scheduling of a virtual network node N3 as shown in Figure 2(b).

The transmission times of network subtasks generated by τ1 and τ2

can then be considered as their execution times on node N3. Since

network scheduling is atomic in practice, we assume that node

N3 employs prioritized, non-preemptive EDF scheduling. Thus

the general distributed scheduling problem can be expressed as the

problem of scheduling a set of nodes, where each node uses either

a preemptive or a non-preemptive EDF scheduler.

2.3 Node schedulability condition
We now consider a node Nn with subtasks {J (i,k,x) |x = n},

and derive schedulability conditions under preemptive and non-

preemptive EDF schedulers, i.e., conditions which guarantee d(i,k) ≤
D(i,k). Consider the following classical definition of demand bound

function that bounds the worst-case (maximum) resource demand

of all subtasks in node Nn.

dbf(i,k)(t) =

—
t + Ti − D(i,k)

Ti

�
C(i,k) (3)

dbfn(t) =
X

J (i,k,x) :x=n

dbf(i,k)(t)

dbfn(t) upper bounds the largest resource demand of all the sub-

tasks in node Nn over any time interval of length t. Liu and Lay-

land [18] have shown that d(i,k) ≤ D(i,k) holds for each subtask

J (i,k,n) if

dbfn(t) ≤ t × UBn,∀t > 0, (4)

where UBn represents the utilization bound of the scheduling algo-

rithm used by node Nn. It is defined as

UBn =

(
1 under preemptive EDF [18]

1 − δn under non-preemptive EDF [9]
(5)

where δn is maxJ (i,k,x) :x=n
C(i,k)

D(i,k)
. For convergence of the opti-

mization technique that we develop in Section 3, all the constraints

used in the optimization problem must be concave functions of the

variables. In that framework, local subtask deadlines D(i,k) are the

variables, and the schedulability conditions that we develop here
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are used as constraints. Hence Eq. (4) cannot be directly used in

that framework, because dbfn(t) is not a concave function of the

local deadlines. Therefore, we now present an upper bound for

dbfn(t) such that the corresponding schedulability conditions can

be used in our optimization framework. Consider the following

density function.

den(i,k)(t) =
C(i,k)

D(i,k)
· t

It is easy to see that den(i,k) is a tight, linear, upper bound of

dbf(i,k), i.e., dbf(i,k)(t) ≤ den(i,k)(t) for all t > 0, and they

are equal when t = D(i,k).

Using this upper bound in Eq. (4), we get the following condi-

tions for schedulability of subtasks in Nn.

X
J (i,k,x):x=n

C(i,k)

D(i,k)

≤ UBn,∀t > 0 (6)

For the schedulability constraint given above, the following state-

ment is true for all D(i0,k0) > 0.

∂2

∂D2
(i0,k0)

2
4UBn −

X
J (i,k,x):x=n

C(i,k)

D(i,k)

3
5 ≤ 0

Hence the constraint is a concave function of deadline variables

and therefore it can be used in the optimization framework that we

develop in Section 3.

2.4 Failure model

Failure models have been studied to tolerate faults [25, 26, 23].

We consider a failure model assuming that any transient failures

can occur during executions and detection of the failures is possible

within the maximum time2. Once a subtask experiences transient

failure such as system error or packet loss during execution, sub-

tasks can re-execute after failure detection, and they are still subject

to additional failures during these re-executions. Let P(i,k) denote

the probability that failure occurs to a single execution of a job of

J (i,k). Since a single job of J (i,k) can experience one or more

failures in its lifetime, let F(i,k) denote the number of such fail-

ures. Finally, let P{F(i,k) = m} represent the probability that a

job of J (i,k) experiences exactly m failures and then finally one

success. If failures occur independently of each other, we get:

P{F(i,k) = m} = (1 − P(i,k)) · (P(i,k))
m

. (7)

Note that the above failure model (independent failures) is just one

example, and as long as P{F(i,k) = m}s are given, our framework

can be applied. We assume that the worst-case execution time of

re-execution of J (i,k) is also C(i,k). This assumption is for better

explanation of deriving equations in later sections, and our frame-

work can be easily extended to the model with larger (due to time

to detect failure) or smaller (due to efficient failure recovery proce-

dure) worst-case re-execution time.

Our failure model enables to transform a complex problem deal-

ing with random failures to a more manageable problem where the

randomness is bounded through probabilistic execution.

2Fault detection techniques have been widely studied [23, 25]. An
example of techniques to justify the assumption is to use timeout
of acknowledgement packets.

2.5 An example of the system model

There are many systems [3, 30, 17] that can be modeled with our

system model, and we exemplify our system model by a system

called office enterprise security and hazard sensing environment

[3]. Sensor nodes monitor circumference such as movement of any

objects, temperature, and humidity, and they send the raw data to

office enterprise network. Nodes in the network process the data

(e.g., filter and analyze the data, update database [17]), and they

relay the processed data to the destination nodes for security mon-

itoring or video conferencing. Here we can regard transmission

of the data through network as network scheduling and processing

of the data as CPU scheduling. QoS for these time-critical tasks

can be modeled using end-to-end delay-sensitive utility functions

in that a better QoS is implied by more prompt response in sensor

monitoring or more interactive communication in video conferenc-

ing. The system needs online scheduling to be adaptive to dynam-

ically changing environments (e.g., joining/leaving of participants

for video conferencing, turning on/off sensor nodes to save power

in security monitoring) and unpredictable errors (e.g., dynamic sys-

tem failures, packet loss).

3. OPTIMIZATION FRAMEWORK

3.1 Deadline assignment problem

The deadline assignment problem aims to determine the local

deadline (D(i,k)) of every subtask (J (i,k)) in order to provide a

guaranteed maximum system utility (maximum Usys). Thus the

problem can be formulated as

(Primal problem)

Max: Usys =
X

τi∈T sys

Ui

 
miX
k=1

D(i,k)

!
, (8)

Sub. to:
X

J (i,k,x):x=n

C(i,k)

D(i,k)

≤ UBn,∀n : n ∈ 1, . . . , VN

(9)

In order to provide guarantees over end-to-end delays and thereby

a resulting system utility, we require that the node schedulability

constraint of Eq. (9) be valid for all nodes. Otherwise, the utility

may exhibit unstable behavior because of larger than expected sub-

task delays. Therefore a solution to the above optimization problem

is said to be valid if Eq. (9) holds for all nodes.

Eq. (9) is a set of concave constraints on local deadline variables.

Since each Ui is a concave and decreasing function (discussed in

Section 2), the summation in Eq. (8) is also concave. Therefore the

above primal problem is naturally a concave optimization problem.

3.2 Distributed optimization framework
In many practical scenarios, distributed optimization schemes of-

fer more advantages over centralized ones. Distributed computa-

tions, which make decisions based on local information, are more

scalable, efficient and robust when compared to centralized meth-

ods that rely on global information. Therefore, in this subsection,

we present a distributed computation technique for the above opti-

mization problem.

Any optimization problem can be re-written in its dual form us-

ing Lagrange multipliers (see Chapter 5 in [8]). This formulation is

called the Lagrange dual problem. For the formulation presented in
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the previous subsection, called “primal” formulation, its Lagrange

dual is given as

(Dual problem)

min
p≥0

max
D≥0

L(D,p) =
X

τi∈T sys

Ui

 
miX
k=1

D(i,k)

!

+
X

n:n∈1,...,VN

pn ·

0
@UBn −

X
J (i,k,x):x=n

C(i,k)

D(i,k)

1
A

(10)

Sub. to: pn ≥ 0,∀n ∈ 1, ..., VN (11)

where D = {D(i,k)}, ∀(i, k) ∈ {(s, w)|τs ∈ T sys, w = 1, ...,ms} and

p = {pn}, ∀n ∈ 1, ..., VN . In the above problem formulation, each

pn is a Lagrange multiplier that denotes the price for satisfying

the schedulability constraint of node Nn. In optimization theory,

the duality gap of a problem represents the difference between the

optimal solutions of its primal and dual formulations. This gap is

zero when the primal problem is a concave optimization problem

(see Chapter 5 in [8]), and this means that an optimal solution to

the dual problem is equivalent to an optimal solution to the primal

problem. Therefore, we can obtain an optimal solution to the dead-

line assignment problem by finding optimal solutions to the dual

problem.

We can find node prices pn that collectively minimize L(D,p)
through gradient method [6, 19] as follows.

pn(t + 1) =

2
4pn(t) − γn ·

0
@UBn −

X
J (i,k,x):x=n

C(i,k)

D(i,k)

1
A
3
5

+

(12)

where pn(t) means the value of pn at the tth iteration and [x]+

means max{0, x}. The constant γn controls the step-size between

iterations and also affects the rate of convergence. If it satisfies Lip-

schitz continuity [6], then the iterations are guaranteed to converge.

We can also obtain local deadlines D(i,k) that maximize L(D,p)
by solving the following differential equation:

∂L(D,p)

∂D(i,k)(t + 1)
= 0 (13)

We calculate the above equation in conjunction with Eq. (12), and

then obtain the local deadline D(i,k) in the (t + 1)th
iteration (de-

noted as D(i,k)(t+ 1)). In this iteration, the other deadlines D(i,x)

are regarded as constants (where x �= k), and their values from the

tth iteration are used (D(i,x)(t)).

4. ROBUST OPTIMIZATION FRAMEWORK
In the previous section we presented a distributed QoS optimiza-

tion framework for the deadline assignment problem (henceforth

denoted as the “nominal optimization framework”). The presented

framework makes it possible for all local deadlines to converge to

a global optimal solution in a distributed manner. An important

premise employed in the nominal formulation is that every subtask

is free from failure. However, subtasks are subject to unpredictable

failures in many practical environments. Typical failures include

execution failures from transient hardware faults and communica-

tion failures from network errors.

In this paper, we assume that each subtask J (i,k) is subject to

unpredictable failures and P(i,k) represents the probability that a
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Figure 3: Behavior of nominal optimization framework under

failure

single failure happens to a single job of J (i,k). We assume that the

job executes again to recover from this failure, imposing an extra

execution time of C(i,k). As failures occur randomly, re-executing

jobs can repeatedly suffer from failures. This adds additional ex-

ecution times to jobs in an unpredictable manner and embeds un-

certainty into the worst-case execution time of subtasks. Such un-

certainty potentially leads the nominal optimization framework to

exhibit poor behavior. For instance, the QoS guaranteed by the

nominal framework may not be achievable as subtasks experience

random failures. As an example, we consider a simple task set as

shown in Figure 2(b). A subtask J (i,k) has C(i,k) = 1 for i = 1,

and C(i,k) = 2 for i ≥ 2. Suppose each subtask J (i,k,4) starts ex-

periencing random failures with a failure probability P(i,k,4) = 0.1

from the 500th iteration. Figure 3(a) illustrates such an unstable

behavior; the system utility keeps fluctuating as failures occur, and

the guaranteed QoS of −100 is not met3. This happens because

the uncertainty in worst-case execution time of subtasks invalidates

some of the node schedulability constraints of Eq. (9), and as a

result local subtask deadlines are not met. Figure 3(b) plots the ra-

tio of nodes with density greater than UBn to the total number of

nodes. As shown, this ratio increases in an unpredictable manner

with node failures.

Handling of unpredictable failures entails an optimization frame-

work that can produce a “robust” (valid) solution under perturba-

tions of subtask worst-case execution times. Many issues need to

be addressed in order to make our nominal optimization framework

robust: 1) we must understand how random failures introduce un-

certainty into the worst-case execution time of subtasks, 2) we must

characterize this uncertainty in order to accommodate random per-

turbations in node-level schedulability, taking into consideration

the conditions imposed by Lagrangian duality theory, and 3) we

must define a proper notion of robustness to cope with the uncer-

tainty effectively.

3In Figure 3(a) and (b) seem to illustrate unstable behaviors at the
beginning because each deadline has not yet converged. Once each
deadline converges to the optimal point, there is no more unstable
behavior in case of no failure.
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4.1 Uncertainty set

When a subtask fails to execute, it re-executes to recover from

the failure. This imposes an extra execution time and subsequently

increases the node density. This increment potentially leads to in-

validation of the node schedulability constraint of Eq. (9), thereby

invalidating the QoS guarantee. We require the node schedulability

constraints to be valid under some failures in order to preserve the

QoS guarantee of the optimization framework.

Consider a subtask J (s,t) on a node Nn. Suppose it experi-

ences a failure during execution, and it demands another execution

of C(s,t) prior to its deadline. This additional execution require-

ment can be successfully satisfied if some spare time no smaller

than C(s,t) has been reserved in advance. Such a reservation can

be viewed as adding the density for another (new) subtask into the

schedulability constraint. For instance, we can successfully save

spare time enough to re-execute C(s,t) by its deadline if the follow-

ing condition holds:X
J (i,k,x):x=n

C(i,k)

D(i,k)

+
C(s,t,n)

D(s,t,n)

≤ UBn (14)

Failures happen to subtasks in an unpredictable manner. Sub-

tasks can experience even additional failures while they are execut-

ing again to recover from earlier failures. Therefore subtasks can

experience a different number of failures randomly. This inherently

embeds uncertainty into the extra execution times reserved for fail-

ure recovery. Recall that F(i,k) denotes the maximum number of

failures that can be experienced by a single job of subtask J (i,k).

We now show how to characterize the uncertainty in failure-related

(extra) execution times using F(i,k). As F(i,k) for each subtask in a

node can be different, there are a number of possible combinations

of F(i,k)’s on each node. We refer to a single instance of the com-

binations within a node Nn as an “uncertainty instance” Xn. More

formally,

Xn = (F(i1,k1), F(i2,k2), ...), (15)

where (il, kl) ∈ {(s, t)| J (s,t,x) : x = n}. Let Xn.l denote the

l-th element of Xn. Xn indicates that every subtask J (i,k) experi-

ences at most F(i,k) failures, where F(i,k) ∈ Xn. Using this uncer-

tainty instance, we can define an entire uncertainty set (denoted as

An) for a node Nn, which is a set of all possible combinations of

F(i,k), i.e., all possible Xn. We note that the number of elements

in An is theoretically infinite.

We can then generalize Eq. (14) in order to provide J (i,k) with

some spare execution time, so that it can recover from at most

F(i,k) failures. This generalization is given by

X
J (i,k,x) :x=n

(1 + F(i,k)) ·
C(i,k)

D(i,k)
≤ UBn (16)

4.2 Uncertainty set with K-failure
We wish to derive a notion of robustness coping with uncertainty.

The uncertainty set An is generally too large, and hence it is hard

to develop a proper notion of robustness based on it. Therefore,

we first categorize its elements to find some useful property per

category in this subsection. Then, in the next subsection, we de-

rive a notion of robustness from this property (called K-robustness:

being robust to at most K concurrent failures), and show how K-

robustness is incorporated with the robust formulation.

We classify the uncertainty set based on the notion of concurrent

failures. Let a(i,k) denote the release time of a subtask J (i,k). We

Uncertainty instances P{An(K)} P{An(K)}
with K-failure K with with

Xn = (F(1,1), F(2,1)) Pi,k = 0.1 Pi,k = 0.01

(0,0) 0 0.8100 0.9801

(0,0), (1,0), (0,1) 1 0.9720 0.9997

(0,0), (1,0), (0,1) 2 0.9963 0.9999

(2,0), (1,1), (0,2)

(0,0), (1,0), (0,1), (2,0), (1,1) 3 0.9995 0.9999

(0,2), (3,0), (2,1), (1,2), (0,3)

...
...

...
...

Table 1: Uncertainty instances with K-failure

define a set of subtasks to be concurrently running if there exists

some time t such that a(i,k) ≤ t ≤ a(i,k) + D(i,k) for each sub-

task J (i,k) in the set. Failures are then defined to be concurrent, if

they occur together for a set of concurrently running subtasks. For

a given uncertainty instance Xn, the number of concurrent failures

is maximized when all concurrently running subtasks J (i,k) expe-

rience F(i,k) failures together, where F(i,k) ∈ Xn. The maximum

number of concurrent failures for Xn is then calculated as

M(Xn) =

|Xn|X
l=1

Xn.l (17)

where |Xn| is the number of elements in tuple Xn. We define

an uncertainty instance Xn to be associated with K-failure, if Xn

can contain at most K concurrent failures (i.e., M(Xn) ≤ K).

As an example, we consider two subtasks J (1,1,n) and J (2,1,n)

in Nn. Table 1 shows some uncertainty instances with K-failure.

The first column of the table shows uncertainty instances Xn =
(F(1,1), F(2,1)), and the second column represents the maximum

number of concurrent failures (denoted as K).

We now consider the probability (denoted by P{Xn}) that a sin-

gle uncertainty instance Xn can occur, when each subtask J (i,k)

experiences a failure independently4 with its own failure probabil-

ity P(i,k).

P{Xn} =

|Xn|Y
l=1

P{F(il,kl) = Xn.l}, (18)

where P{F(il,kl) = Xn.l} is given by Eq. (7). Now we define

An(K) to denote a set of uncertainty instances with K-failure, i.e.,

An(K) = {Xn|M(Xn) ≤ K, Xn ∈ An} (19)

Then we can define the probability (denoted by P{An(K)}) that an

uncertainty set with K-failure can occur, as the sum of probability

of its individual elements:

P{An(K)} =
X

Xn∈An(K)

P{Xn}. (20)

Table 1 also shows the probability of uncertainty set with K-failure

in the third column when each subtask J i,k has Pi,k = 0.1, and

in the fourth column when each subtask J i,k has Pi,k = 0.01,

respectively. As an example, P{An(K = 0)} and P{An(K = 1)}
when Pi,k = 0.1 are computed as follows: each subtask has a

probability of having zero failure as 0.9 (= 1.0 − 0.1), and they

4For simplicity, we assume independence of failures, but if they are
correlated, then we can easily apply the correlation in our frame-
work.
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have both zero failure (Xn = (0, 0)) at the probability of 0.81 (=
0.9 · 0.9) so that P{An(K = 0)} is equal to 0.81. Likewise, the

probability that each task experiences exactly one failure and then a

success, is 0.9 · 0.1 = 0.09. Then the probability (Xn = (1, 0)) is

0.081 (= 0.09 ·0.9) that a subtask experiences one failure and then

a success while another subtask experiences a success without any

failure. Since P{An(K = 1)} includes three uncertain instances

(0,0), (1,0), and (0,1), it equals to 0.972 (= 0.9 · 0.9 +0.09 · 0.9 +
0.9 · 0.09).

4.3 Robust formulation with K-robustness

In this subsection, we introduce a notion of robustness on the

basis of the notion of K-failure. A node Nn is said to be robust to

K-failure (or K-robust), if it can keep all of its subtasks schedulable

under any uncertainty set with K-failure. The following theorem

presents a schedulability condition for K-robust nodes.

THEOREM 1. A node Nn is K-robust, ifX
J (i,k,x):x=n

C(i,k)

D(i,k)

+ K · max
J (i,k,x):x=n

C(i,k)

D(i,k)

≤ UBn. (21)

PROOF. Let us assume that we have a set of subtasks for which

Eq. (21) holds. We consider an uncertainty set with K-failure, that

is each J (i,k) experiences F(i,k) failures and
P

J (i,k,x):x=n F(i,k)

≤ K. Using this bound condition, we can see that the density of the

uncertainty set (LHS of Eq. (16)) is less than or equal to the LHS

of Eq. (21).

Since the schedulability condition holds, node Nn can keep all of

its subtasks schedulable under this uncertainty set with K-failure.

Since we made no assumptions about the uncertainty set (except

that it has K-failure), we get that the above statement holds for any

uncertainty set with K-failure. Therefore node Nn is K-robust.

The above theorem, although somewhat obvious, is important

because it enables us to incorporate random failures into the opti-

mization problem, without violating the Lagrange requirements for

distributed computation.

P{An(K)} in Eq. (20) can be interpreted as the probability that

a K-robust node Nn produces valid solutions under random fail-

ures. Let us define the protection function of a node Nn, Gn(K),

as a function that represents the difference between the nominal

schedulability constraint of Eq. (9) and the K-robust schedulability

constraint of Eq. (21). That is,

Gn(K) = K · max
J (i,k,x):x=n

C(i,k)

D(i,k)
. (22)

Thus, our nominal optimization framework for the deadline as-

signment problem can be made robust against K-failure as follows.

(Robust formulation)

Max: Usys =
X

τi∈T sys

Ui

 
miX
k=1

D(i,k)

!
, (23)

Sub. to:
X

J (i,k,x) :x=n

C(i,k)

D(i,k)

+ Gn(K) ≤ UBn,

∀n : n ∈ 1, . . . , VN . (24)

In this robust formulation, K controls the trade-off between robust-

ness and performance with a probability. Such a trade-off will be

explored in Section 6. Further, Equation (24) remains valid even

when the actual execution time of subtask J(i,k) is smaller than

C(i,k) or the actual number of subtask failures in a node is smaller

than K. Therefore the above formulation is also sustainable with

respect to the execution time of subtasks. Finally, the formulation

is a standard convex optimization problem, because the only mod-

ification done to the nominal framework is addition of a convex

and decreasing protection function (Gn(K)) to the schedulability

constraints. Therefore the duality gap of this robust formulation is

zero, and we can compute the optimal solution using its dual for-

mulation. The Lagrange dual problem of this robust formulation is

given as follows:

(Dual problem of robust formulation)

min
p≥0

max
D≥0

L(D,p) =
X

τi∈T sys

Ui

 
miX
k=1

D(i,k)

!

+
X

n:n∈1,...,VN

pn ·

0
@UBn −

X
J (i,k,x):x=n

C(i,k)

D(i,k)

− Gn(K)

1
A

Sub. to: pn ≥ 0, ∀n ∈ 1, ..., VN

We can find the optimal solution by solving the dual problem, just

as described in Section 3.2.

5. DISTRIBUTED COMPUTATION
In the previous sections we presented optimization frameworks

that perform distributed computations to collectively evolve to an

optimal solution. This section discusses some implementation is-

sues. They include 1) what kind of control messages should be

exchanged, 2) what will happen if some control messages are lost,

and 3) how to define a convergence criteria for our optimization

frameworks.

5.1 Control messages

The Lagrangian dual formulations identify what information needs

to be exchanged in order to carry out distributed optimization. Specif-

ically, Eq. (12) shows how to compute a node price pn at each node

Nn, and it requires knowledge of all the subtask deadlines in the

same node Nn. Eq. (13) shows how to compute a subtask deadline

D(i,k,n), and it requires knowledge of pn and the local deadlines

of τi’s other subtasks. That is, solving Eq. (13) requires cross-node

communication. We refer to the information (i.e., pn and D(i,k))

to be exchanged as “control message”. Exchange of control mes-

sages can be effectively implemented with little extra communi-

cation cost. For example, many approaches to the network utility

maximization problem employ efficient mechanisms to exchange

implicit information (e.g., congestion price marked in packets, loss

rate, or some piggybacked values) with no extra packet delivery [1].

5.2 Loss of control messages
For many practical environments, exchange of control messages

can also fail, and one may wonder the effect of such failures on

our distributed computations. Fortunately, our optimization frame-

works can converge to an optimal solution, even in the presence of

such control message losses. For example, when a control message

is lost at some iteration step, the frameworks can use the control

message from the previous step. This asynchronous iteration re-

duces the rate of convergence, but still guarantees convergence [6].
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(a) A general distributed sys-
tem

���

(b) A sensor network

Figure 4: Network topology in simulation

A key idea of the proof [6] is to set a worst-case period by which

the control messages become outdated, and the rest of the proof is

similar to the case of synchronous iterations. Section 6 will illus-

trate the effect of loss of control messages on convergence.

5.3 Convergence criteria

Another implementation issue is how to determine when the it-

erative computation of Eqs. (12) and (13) converge. We define our

convergence criteria:

|pn(t + 1) − pn(t)| < εp (25)

|D(i,k)(t + 1) − D(i,k)(t)| < εD (26)

where εp and εD are sufficiently small positive real numbers; they

generate a trade-off between accuracy and rate of convergence.

Many gradient algorithms generally employ this kind of conver-

gence criteria [6].

6. PERFORMANCE EVALUATION

This section presents (MATLAB-based) simulation results to il-

lustrate the performance of the proposed optimization frameworks

in two aspects. We first evaluate the behavior of our robust frame-

work under failure in comparison to the nominal framework. We

then illustrate the effect of control message loss on our distributed

optimization framework.

We consider two simulation settings with different network topolo-

gies. The first simulation setting includes a network topology that

represents a general distributed real-time system, as shown in Fig-

ure 4(a). It contains six tasks over seven nodes, and each task

consists of multiple subtasks across nodes, as shown in the figure.

The second simulation setting involves another topology, shown in

Figure 4(b), that represents a typical sensor network that collects

sensor data at leaf nodes and relays the data through intermediate

nodes to the root node. It has 20 nodes forming a tree structure, and

12 tasks execute from leaf nodes to the root node, as shown in the

figure. The worst-case execution times (C(i,k)) of subtasks are ran-

domly chosen from the interval [1, 5] for the first setting and from

the interval [1, 3] for the second setting. For both the simulation

settings, we use utility functions Ui(x) = − 1
2
x2 for each task τi,

unless specified otherwise. For convenient reference, let NF rep-

resent our nominal distributed optimization framework, and RF(K)
represent our robust distributed optimization framework with K-

robustness.
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(c) The cumulative # of occurrence of invalid node schedulability

Figure 5: Robust frameworks over the first simulation setting

6.1 Robust optimization framework

In order to show the effect of random failures on nominal and

robust optimization frameworks, we run simulations on both the

simulation settings for 2000 steps such that the first half involves

no failure and the second half contains random failures. Random

failures are added into the 3 subtasks executing in the upper left

node in Figure 4(a) (denoted as Nu) and the 12 subtasks executing

in the root node in Figure 4(b) (denoted as Nr). Each of these

subtasks experiences a failure with a probability of 5%.

Figure 5(a) shows the behavior of NF and RF over the first sim-

ulation setting. It is shown in the figure that under NF, the sys-

tem utility converges during the first 1000 steps, but it becomes

unstable as random failures occur from the 1000th step onwards.

On the other hand, the figure shows that under RF(K=1), the sys-

tem utility remains stable in a large scale, however it is small-scale

fluctuating as failures occur (see zoom in Figure 5(b)). In fact,

RF(K=1) is fully robust when the number of maximum possible

concurrent failures is bounded by one (i.e., robust to the failures

captured by Au(K=1)). However, as simulations may contain two

or more concurrent failures5, RF(K=1) shows small-scale fluctua-

tions over such failures. Figure 5(b) also shows that under a more

robust framework, such as RF(K=2), it is able to remain stable

without any fluctuations over the same failures.

Figure 5(c) shows another aspect of our optimization frameworks.

5Since failures may occur independently of each other and may
consecutively occur due to the failure of re-executions, the number
of concurrent failures can be any non-negative integer value.
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(b) The cumulative # of occurrence of invalid node schedulability

Figure 6: Robust frameworks over the second simulation set-

ting

Failures often invalidate node-level schedulability and consequently

make resulting solutions invalid. Figure 5(c) plots the number of

occurrences of invalid node-level schedulability constraint at node

Nu under NF, RF(K=1) and RF(K=2), as iterations continue. The

figure shows that as failures continue to occur, such invalid schedu-

lability constraints keep increasing rapidly under NF, increases very

slowly under RF(K=1), and remains zero under RF(K=2), indicat-

ing that a more robust framework also produces more valid solu-

tions. This is because if the number of current failures is more than

K, end-to-end deadline may not be met and then guaranteed utility

may not be achieved.

Figure 6 shows simulation results over the second simulation set-

ting. It basically shows that the simulation results obtained from

the first simulation setting are also applicable in the second set-

ting. Figure 6(a) shows that under NF, the system utility becomes

noticeably unstable under failures, but under robust frameworks,

it remains stable in a large scale. It is still marginally fluctuating

under robust frameworks, similarly to the behavior shown in Fig-

ure 5(b). Figure 6(b) shows that the occurrences of invalid node-

level schedulability constraints decrease sharply as the framework

becomes more robust (i.e., K increases). The actual numbers of

such occurrences are shown in Table II with their expected values.

Table II also shows that as K increases, the robustness probability

(P{An(K)}) increases, but the system utility decreases6. Here we

can see that K serves as a parameter to control the trade-off between

QoS guarantees and probabilistic robustness.

6.2 Loss of control messages
Our optimization framework requires exchange of some con-

trol messages (D(i,k) and pn) to perform distributed computations.

Here we evaluate the performance of the framework in the presence

of loss of some control messages. We use the first simulation set-

6In table II, the expected value is different from the actual cumula-
tive number of occurrence because the actual number is just from a
sample path of experiment.

cumulative # of occurrence of

K P{An(K)} invalid node-level schedulability Utility

(expected value)

0 0.5404 390 (460) -3443

1 0.8646 117 (135) -3754

2 0.9700 34 (30) -4078

3 0.9946 6 (5) -4412

Table 2: Robustness and achievable QoS with K
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Figure 7: Convergence behavior under loss of control messages

ting. We deliberately drop some control messages with some loss

probability (0.0, 0.2, 0.4, 0.6, or 0.8). When a control message is

lost, the framework uses the previous message to recover the loss.

Figure 7 shows that the rate of convergence reduces as the loss

probability increases. It also shows that the framework converges

even with a loss probability of 80%, at the expense of convergence

rate. These results go with the explanation in Section 5.2. We can

see that loss of control messages only affects convergence rate, not

convergence itself.

7. CONCLUSION
This paper presented a robust distributed optimization frame-

work maximizing the aggregate QoS in distributed soft real-time

systems, particularly, to effectively address the deadline assignment

problem in the presence of unpredictable failures. It offers a solid

foundation that translates uncertainty (due to random failures) to

probabilistically robust schedulability.

Several aspects of the framework are directions for further re-

search. Our framework mainly accepts convex and concave con-

straints. However, most efficient schedulability conditions [5, 2]

do not satisfy this property. Hence one direction is to develop a

new tight, convex or concave schedulability condition. Our notions

of K-failure and K-robustness are tightly coupled with node-level

schedulability. Another interesting direction is to extend such no-

tions towards the entire system schedulability. This raises chal-

lenges of developing new analysis techniques for distributed real-

time systems, which makes it possible to analyze the schedulability

of an entire distributed system in a holistic manner.
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